
IBM
®

DB2
®

Life Sciences Data Connect

Planning, Installation, and
Configuration Guide

Version 8

GC27-1235-00

���

IBM
®

DB2
®

Life Sciences Data Connect

Planning, Installation, and
Configuration Guide

Version 8

GC27-1235-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About this book v
Who should read this book v
What’s new in Version 8? v
Online information vi
Conventions vi
How to read the syntax diagrams. vii
How to send your comments ix

Chapter 1. What is DB2 Life Sciences Data
Connect? 1
DB2 Life Sciences Data Connect 1
IBM Life Sciences DiscoveryLink 2

Chapter 2. Installing DB2 Life Sciences Data
Connect 5
Installing DB2 Life Sciences Data Connect . . 5
Before installing DB2 Life Sciences Data
Connect 7
Installing DB2 Life Sciences Data Connect on
AIX, HP-UX, Linux, and Solaris Operating
Environment servers 7
Installing DB2 Life Sciences Data Connect on
Windows servers 8
After installing DB2 Life Sciences Data
Connect 10

Chapter 3. Table-structured files as data
sources 13
What are table-structured files? 13
Types of table-structured files 13

Sorted files 14
Unsorted files 14

How DB2 Life Sciences Data Connect works
with table-structured files 14
Adding table-structured files to a federated
system 16
Registering the table-structured file wrapper 16
Setting the DB2_DJ_COMM environment
variable for the table-structured file wrapper . 17
Registering the server for table-structured
files 18
Registering nicknames for table-structured
files 19
Wrapper limitations and considerations for
the table-structured file wrapper 23

File limitations and considerations for the
table-structured file wrapper 24
File access control model for the
table-structured file wrapper 25
Optimization tips and considerations for the
table-structured file wrapper 25
Messages for the table-structured file wrapper 25

Chapter 4. Documentum as a data source 31
What is Documentum? 31
Adding Documentum to a federated system 33
Linking to Documentum client libraries (AIX
and Solaris Operating Environment only) . . 34
Pointing to Documentum’s client dmcl.ini file 35
Registering the Documentum wrapper . . . 36
Setting the DB2_DJ_COMM environment
variable for the Documentum wrapper . . . 37
Registering the server for Documentum data
sources. 38

Arguments 38
Options 39

Mapping users (Documentum wrapper). . . 40
Registering nicknames for Documentum data
sources. 40

Column options. 42
Nickname column options 42
Nickname options 42
Understanding pseudo columns 44
CREATE NICKNAME example 47

Registering custom functions for
Documentum data sources 49

Custom function string argument rules . . 50
Using custom functions in queries . . . 50
Custom function table. 50

Running queries against Documentum data
sources. 55
What is the CreateNicknameFile utility for the
Documentum wrapper? 56
Installing the CreateNicknameFile utility
(Documentum wrapper) 57
Configuring the CreateNicknameFile utility
(Documentum wrapper) 58
Mapping the DM_ID object type in
Documentum registered tables 59

© Copyright IBM Corp. 2001, 2002 iii

Dual defining repeating attributes
(Documentum wrapper) 60
Limitations and considerations for the
Documentum wrapper 60
Access control for the Documentum wrapper 62
Messages for the Documentum wrapper . . 62

Chapter 5. Excel as a data source 69
What is Excel? 69
Prerequisite for the Excel wrapper 71
Adding Excel to a federated system 71
Registering the Excel wrapper 71
Registering the server for an Excel data
source 72

Argument definitions 72
Registering nicknames for Excel data sources 73

CREATE NICKNAME syntax (for Excel) 73
Option definitions 74

Running queries against Excel data sources 74
Sample Excel wrapper scenario 75
Wrapper limitations for the Excel wrapper . . 77
Excel file limitations 78
File access control model for the Excel
wrapper 78
Messages for the Excel wrapper 78

Chapter 6. BLAST as a data source . . . 85
What is BLAST? 85
Adding BLAST to a federated system . . . 90
Verifying that the correct version of the
blastall executable and matrix files are
installed 91
Configuring the BLAST daemon 91
Starting the BLAST daemon. 94
Registering the BLAST wrapper 95
Setting the DB2_DJ_COMM environment
variable for the BLAST wrapper 96
Registering the server for a BLAST data
source 97

Arguments 97
Options 97

Registering nicknames for BLAST data
sources. 98

Nickname column options 99

Nickname options 100
Definition line parsing 100
Fixed columns 101
CREATE NICKNAME example 104

Constructing BLAST SQL queries 106
Sample BLAST queries 106
Optimization tips for the BLAST wrapper 108
Messages for the BLAST wrapper 109

Chapter 7. XML as a data source 111
What is XML? 111
Adding XML to a federated system 115
Registering the XML wrapper 116
Setting the DB2_DJ_COMM environment
variable for the XML wrapper. 116
Registering the server for an XML data
source. 117
Registering nicknames for XML data sources 118
Creating federated views for non-root
nicknames (XML wrapper) 123
Running queries against XML data sources 125
Limitations and considerations for the XML
wrapper 126
Messages for the XML wrapper 127

Chapter 8. Specifying costing nickname
options 133

Chapter 9. Altering nicknames 135
Altering nicknames 135
Changing the data type 135
Changing the nickname option 136

Notices 137
Trademarks 140

Bibliography 143

Index 145

Contacting IBM 147
Product information 147

iv DB2 LSDC Planning, Installation, and Configuration Guide

About this book

This book contains:
v An introduction to DB2 Life Sciences Data Connect and how it fits into the

IBM Life Sciences DiscoveryLink offering, a comprehensive set of software
and services tailored to the life sciences

v Installation instructions for DB2 Life Sciences Data Connect
v Instructions for adding data sources to a federated system by registering

wrappers. Wrappers are modules that enable you or an application to
communicate with a data source using SQL statements.

Technical changes to the text are indicated by a vertical line to the left of the
change.

Who should read this book

This book is for administrators who are setting up a federated database
environment for life sciences research and development data, and for
application programmers who are developing applications for such an
environment.

What’s new in Version 8?

New features for DB2 Life Sciences Data Connect Version 8 include:

In General

v Wrapper library names have been updated.
v Costing nickname options for non-relational data sources has been

added.

Enhanced query planning for non-relational data sources
DB2 Life Sciences Data Connect wrappers have been re-written to
participate in the global query planning process, enhancing the access
strategy developed for a query against one of the supported data
sources. This new planning function increases the performance of
queries sent to non-relational wrappers.

XML wrapper
The XML wrapper has been added. It provides federated access to
XML data sources. XML joins the growing list of non-relational
wrappers introduced since DB2 Universal Database Version 7 that
includes BLAST, Documentum, Excel, and table-structured files.

© Copyright IBM Corp. 2001, 2002 v

Table-structured file wrapper

v The TYPE, VERSION, and NODE server options are no longer
needed.

v The SORTED nickname option has been added.

Documentum wrapper

v The ALL_VALUES nickname option has been added.
v The following custom functions in Version 7 are now nickname

pseudo columns:
– GET_FILE
– GET_FILE_DEL
– GET_RENDITION
– GET_RENDITION_DEL
– HITS
– SCORE

v The RENDITION_FORMAT custom function has been added.

Excel wrapper

v Only one wrapper library file is required for both Excel97 and
Excel2000 data sources.

v The TYPE, VERSION, and NODE server options are no longer
needed.

Online information

This section provides Web addresses and e-mail addresses related to this
product.

http://www.ibm.com/software/data/db2/lifesciencesdataconnect/
DB2 Life Sciences Data Connect product website

http://www.ibm.com/solutions/lifesciences/discoverylink.html
DiscoveryLink website

http://www.ibm.com/solutions/lifesciences/
IBM Life Sciences website

ls@us.ibm.com
IBM Life Sciences email address

Conventions

This book uses these highlighting conventions:

vi DB2 LSDC Planning, Installation, and Configuration Guide

Boldface type
Indicates commands and graphical user interface (GUI) controls (for
example, names of fields, names of folders, menu choices).

Monospace type
Indicates examples of coding or of text that you type.

Italic type
Indicates variables that you should replace with a value. Italic type
also indicates book titles and emphasizes words.

UPPERCASE TYPE
Indicates SQL keywords and names of objects (for example, tables,
views, and servers).

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined as
follows:

Read the syntax diagrams from left to right and top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous
line.

The ──� symbol indicates the end of a statement.

Required items appear on the horizontal line (the main path).

�� STATEMENT required item �

Optional items appear below the main path.

�� STATEMENT
optional item

�

If an optional item appears above the main path, that item has no effect on
the execution of the statement and is used only for readability.

About this book vii

�� STATEMENT
optional item

�

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the
main path.

�� STATEMENT required choice1
required choice2

�

If choosing none of the items is an option, the entire stack appears below the
main path.

�� STATEMENT
optional choice1
optional choice2

�

If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

�� STATEMENT
default choice

optional choice
optional choice

�

An arrow returning to the left, above the main line, indicates an item that can
be repeated. In this case, repeated items must be separated by one or more
blanks.

�� STATEMENT � repeatable item �

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

�� STATEMENT �

,

repeatable item �

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items or repeat a single choice.

viii DB2 LSDC Planning, Installation, and Configuration Guide

Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name).
They represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sometimes a single variable represents a set of several parameters. For
example, in the following diagram, the variable parameter-block can be
replaced by any of the interpretations of the diagram that is headed
parameter-block:

�� STATEMENT parameter-block �

parameter-block:

parameter1
parameter2 parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in
any sequence.

�� STATEMENT item1 * item2 * item3 * item4 �

The above diagram shows that item2 and item3 may be specified in either
order. Both of the following are valid:
STATEMENT item1 item2 item3 item4
STATEMENT item1 item3 item2 item4

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 documentation. You
can use any of the following methods to provide comments:
v Send your comments from the Web. You can access the IBM Data

Management online readers’ comment form at
http://www.ibm.com/software/data/rcf

v Send your comments by e-mail to comments@vnet.ibm.com. Be sure to
include the name of the product, the version number of the product, and
the name and part number of the book (if applicable). If you are
commenting on specific text, please include the location of the text (for
example, a chapter and section title, a table number, a page number, or a
help topic title).

About this book ix

x DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 1. What is DB2 Life Sciences Data Connect?

This chapter introduces you to the DB2 Life Sciences Data Connect product,
the IBM Life Sciences DiscoveryLink offering, and the general steps involved
in setting up a system to query life sciences data.

DB2 Life Sciences Data Connect

IBM® DB2® Life Sciences Data Connect enables a DB2 federated system to
integrate genetic, chemical, biological, and other research data from
distributed sources. A DB2 federated system is a distributed computing
system that consists of a DB2 Universal Database™ server and multiple data
sources from which the DB2 Universal Database server retrieves data.

With a federated system, you or an application can use SQL statements to
query, retrieve, and join data that can be located in several heterogeneous data
sources, such as relational databases from IBM, Oracle, Sybase, and Microsoft,
and non-relational data sources, such as table-structured files. Figure 1
illustrates a federated system using DB2 Life Sciences Data Connect to access
multiple sources of research data.

Figure 1. Accessing life sciences data with DB2 Life Sciences Data Connect

© Copyright IBM Corp. 2001, 2002 1

A DB2 federated system includes clients, a database to which the clients
submit queries (called a federated database), an interface through which the
federated database communicates with data sources, and the data sources
themselves.

The mechanism by which a federated server communicates with a data source
is called a wrapper. To implement a wrapper, the server uses routines stored in
a library called a wrapper module. These routines allow the server to perform
operations such as connecting to a data source and retrieving data from it
iteratively.

After a federated system is set up, the information in data sources can be
accessed as though it is in one large database. Users and applications send
queries to one federated database, which retrieves data from multiple data
sources. Applications work with the federated database just like with any
other DB2 database.

For more information on federated systems, see the DB2 SQL Reference.

Related concepts:

v “IBM Life Sciences DiscoveryLink” on page 2

IBM Life Sciences DiscoveryLink

The DiscoveryLink offering is a set of middleware software and services
tailored specifically to life sciences research and development requirements for
integrating data from multiple heterogeneous data sources.

Figure 2. IBM Life Sciences DiscoveryLink

2 DB2 LSDC Planning, Installation, and Configuration Guide

For example, with DiscoveryLink, you can use a single SQL statement to
integrate protein sequence data from an Oracle database in Switzerland,
chemical structure data from a Sybase database in Japan, and spectroscopic
data stored in table-structured flat files on your local area network. The data
appears as if it is in one virtual database.

Software components include:

DB2® Life Sciences Data Connect
For accessing life sciences data.

DB2 Relational Connect
For accessing Oracle, Sybase, and Microsoft® relational databases. For
more information on DB2 Relational Connect, see the Federated Systems
Guide.

DB2 Connect™

For accessing DB2 database servers on host systems. For more
information on DB2 Connect, see the DB2 Connect User’s Guide.

DB2 Universal Database™

To optimize queries and integrate results across multiple
heterogeneous data sources. For more information on DB2 Universal
Database, see the DB2 Administration Guide.

For more information on DiscoveryLink software and services, see ″Online
information″ in the related links section below.

Related concepts:

v “DB2 Life Sciences Data Connect” on page 1

Chapter 1. What is DB2 Life Sciences Data Connect? 3

4 DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 2. Installing DB2 Life Sciences Data Connect

This chapter details the platforms supported for each wrapper, the installation
instructions for Unix-based and Windows-based wrappers, and the wrapper
libraries placed on your system after installation is complete.

Installing DB2 Life Sciences Data Connect

To use DB2 Life Sciences Data Connect to query and retrieve life sciences
data, you must install the wrappers, then register each wrapper to add them
to your federated system.

The wrappers have no special requirements beyond those required by DB2
Universal Database and run on any system configuration supported by DB2
Universal Database.

Table 1 shows the DB2 Life Sciences Data Connect wrappers on each
operating system. Instructions for registering each life sciences wrapper are
provided in the topics listed in the related links section below.

Table 1. DB2 Life Sciences Data Connect wrappers by operating system

Wrapper Windows AIX HP-UX Linux Solaris Operating
Environment

Table-structured files X X X X X

Documentum X X X

Excel X

BLAST X X X X

XML X X X X X

During the installation process, there are three installable components for you
to select from: Scientific, Structured files, and Applications. A list of each
installable component and the wrappers included in each component is
provided in Table 2 on page 6.

© Copyright IBM Corp. 2001, 2002 5

Table 2.

Installable
component
name

Description Included wrappers

Scientific Scientific data sources are developed
exclusively for the life sciences
industry, such as those containing
genomic, proteomic, bioinformatic, and
cheminformatic information.

BLAST

Structured files Structured file data sources contain life
sciences data stored in files with a
defined, repeatable structure.

Table–structured file, Excel,
XML

Applications Application data sources use an
application to access the underlying life
sciences data. The raw data can be in a
number of standard and nonstandard
formats.

Documentum

Procedure:

To install DB2 Life Sciences Data Connect, follow these steps:
1. Before you install DB2 Life Sciences Data Connect.
2. Install DB2 Life Sciences Data Connect on AIX, HP-UX, Linux, and Solaris

Operating Environment servers.
3. Install DB2 Life Sciences Data Connect on Windows servers
4. After you install DB2 Life Sciences Data Connect.

Related tasks:

v “Before installing DB2 Life Sciences Data Connect” on page 7
v “Installing DB2 Life Sciences Data Connect on AIX, HP-UX, Linux, and

Solaris Operating Environment servers” on page 7
v “Installing DB2 Life Sciences Data Connect on Windows servers” on page 8
v “After installing DB2 Life Sciences Data Connect” on page 10
v “Installing the CreateNicknameFile utility (Documentum wrapper)” on page

57

6 DB2 LSDC Planning, Installation, and Configuration Guide

Before installing DB2 Life Sciences Data Connect

This task is part of the main task for Installing DB2 Life Sciences Data Connect.

Procedure:

Before you install DB2 Life Sciences Data Connect on your federated server:
v Confirm that you have DB2 Universal Database Enterprise Server Edition

installed on the federated server.
v Make sure that the database has Federated Database System Support turned

on. To check this setting, run the following command from the DB2
command line processor:
GET DATABASE MANAGER CONFIGURATION

This command displays all of the database parameters and their current
settings. Confirm that the FEDERATED parameter is set to YES.
If the FEDERATED parameter is set to NO, run the following command
from the DB2 command line processor:
UPDATE DATABASE MANAGER CONFIGURATION USING FEDERATED YES

The next task in this sequence of tasks is Installing DB2 Life Sciences Data
Connect on AIX, HP-UX, Linux, and Solaris Operating Environment servers.

Related tasks:

v “Installing DB2 Life Sciences Data Connect on Windows servers” on page 8
v “After installing DB2 Life Sciences Data Connect” on page 10
v “Installing DB2 Life Sciences Data Connect on AIX, HP-UX, Linux, and

Solaris Operating Environment servers” on page 7

Installing DB2 Life Sciences Data Connect on AIX, HP-UX, Linux, and Solaris
Operating Environment servers

This task is part of the main task for Installing DB2 Life Sciences Data Connect.

Prerequisites:

See ″Before installing DB2 Life Sciences Data Connect″ in the Related tasks
section below.

Procedure:

To install DB2 Life Sciences Data Connect on AIX, HP-UX, Linux, and Solaris
Operating Environment federated servers, use the db2setup utility.

Chapter 2. Installing DB2 Life Sciences Data Connect 7

Note: The screens that are displayed when you use the db2setup utility
depend on what software products are installed on the federated server.
These steps assume that DB2 Life Sciences Data Connect is not
installed.

1. Log in as a user with root authority.
2. Insert and mount your DB2 Life Sciences Data Connect CD-ROM. For

information on how to mount a CD-ROM, see DB2 for UNIX Quick
Beginnings.

3. Change to the directory where the CD-ROM is mounted by entering the
cd /cdrom command, where cdrom is the mount point for your product
CD-ROM.

4. Type the following command:
./db2setup

The DB2 Setup window opens.
5. Follow the prompts in the setup program.

When the installation is complete, DB2 Life Sciences Data Connect will be
installed in the directory along with your other DB2 products.
v On DB2 for AIX servers, the directory is /usr/opt/db2_08_01
v On DB2 for Solaris Operating Environment servers, the directory is

/opt/IBM/db2/V8.1
v On DB2 for HP-UX servers, the directory is /opt/IBM/db2/V8.1
v On DB2 for Linux servers, the directory is /opt/IBM/db2/V8.1

The next task in this sequence of tasks is Installing DB2 Life Sciences Data
Connect on Windows servers.

Related tasks:

v “Before installing DB2 Life Sciences Data Connect” on page 7
v “Installing DB2 Life Sciences Data Connect on Windows servers” on page 8
v “After installing DB2 Life Sciences Data Connect” on page 10

Installing DB2 Life Sciences Data Connect on Windows servers

This task is part of the main task for Installing DB2 Life Sciences Data Connect.

Prerequisites:

See ″Before installing DB2 Life Sciences Data Connect″ in the Related tasks
section below.

Procedure:

8 DB2 LSDC Planning, Installation, and Configuration Guide

To install DB2 Life Sciences Data Connect on Windows federated servers, use
the setup program.
1. Log on to the federated server with the user account that you created to

perform the DB2 Universal Database installation.
2. Shut down any programs that are running so that the setup program can

update files as required.
3. Invoke the setup program. You can invoke the setup program either

automatically or manually. If the setup program fails to start automatically,
or if you want to run the setup in a different language, invoke the setup
program manually.
v To automatically invoke the setup program, insert the DB2 Life Sciences

Data Connect CD into the drive. The auto-run feature automatically
starts the setup program. The system language is determined, and the
setup program for that language is launched.

v To manually invoke the setup program:
a. Click Start, then click Run.
b. In the Open field, type the following command:

x:\setup /i language

where:

x: Represents your CD-ROM drive.

language
Represents the code for your language (for example, EN for
English).

c. Click OK.

The installation launchpad opens.
4. Click Install to begin the installation process.
5. Follow the prompts in the setup program.

When the installation is complete, DB2 Life Sciences Data Connect is
installed in the installation directory with other DB2 products. The default
installation directory is C:\Program Files\IBM\SQLLIB.

The next task in this sequence of tasks is After installing DB2 Life Sciences Data
Connect.

Related tasks:

v “Before installing DB2 Life Sciences Data Connect” on page 7
v “After installing DB2 Life Sciences Data Connect” on page 10
v “Installing DB2 Life Sciences Data Connect on AIX, HP-UX, Linux, and

Solaris Operating Environment servers” on page 7

Chapter 2. Installing DB2 Life Sciences Data Connect 9

After installing DB2 Life Sciences Data Connect

This task is part of the main task for Installing DB2 Life Sciences Data Connect.
After installation, wrapper library files are placed on your system. These
libraries are used during the wrapper registration process.

Procedure:

To validate the installation, check the installation directories for the default
wrapper libraries.

The default file name for each library, by supported operating system, is listed
in Table 3 for Windows platforms, and in Table 4 for UNIX platforms.

Table 3. Default wrapper library names on Windows platforms

Wrapper Windows

Table-structured files db2lsfile.dll

Documentum db2lsdctm.dll

Excel97 / Excel2000 db2lsxls.dll

BLAST db2lsblast.dll

XML db2lsxml.dll

Table 4 lists wrapper library name on the supported UNIX platforms.

Table 4. Default wrapper library names by UNIX platform

Wrapper AIX HP-UX Linux Solaris
Operating
Environment

Table-structured
files

libdb2lsfile.a libdb2lsfile.sl libdb2lsfile.so libdb2lsfile.so

Documentum libdb2lsdctm.a libdb2lsdctm.so

BLAST libdb2lsblast.a libdb2lsblast.so libdb2lsblast.so

XML libdb2lsxml.a libdb2lsxml.sl libdb2lsxml.so libdb2lsxml.so

Note: For Documentum on all platforms except Windows, these libraries are
created after they are link–edited to the Documentum client libraries.
The files placed on your system after installation are named
libdb2lsSTdctmF.a on AIX, and libdb2lsSTdctmF.so on Solaris
Operating Environment.

There are no further tasks in this sequence of tasks.

10 DB2 LSDC Planning, Installation, and Configuration Guide

Related tasks:

v “Before installing DB2 Life Sciences Data Connect” on page 7
v “Installing DB2 Life Sciences Data Connect on Windows servers” on page 8
v “Adding table-structured files to a federated system” on page 16
v “Installing DB2 Life Sciences Data Connect on AIX, HP-UX, Linux, and

Solaris Operating Environment servers” on page 7
v “Adding Documentum to a federated system” on page 33
v “Adding Excel to a federated system” on page 71
v “Adding BLAST to a federated system” on page 90
v “Adding XML to a federated system” on page 115

Chapter 2. Installing DB2 Life Sciences Data Connect 11

12 DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 3. Table-structured files as data sources

This chapter explains what table-structured files are, how to add them as data
sources to your federated system, and lists the error messages associated with
the table-structured file wrapper.

What are table-structured files?

A table-structured file has a regular structure consisting of a series of records,
where each record contains the same number of fields, separated by an
arbitrary delimiter. Null values are represented by two delimiters next to each
other.

The following example shows the contents of a file called DRUGDATA1.TXT.
It contains three records, each with three fields, separated by commas:
234,DrugnameA,Manufacturer1
332,DrugnameB,Manufacturer2
333,DrugnameC,Manufacturer2

The first field is the drug’s unique ID number. The second field is the name of
the drug. The third field is the name of the manufacturer who produces the
drug.

Related concepts:

v “Types of table-structured files” on page 13
v “How DB2 Life Sciences Data Connect works with table-structured files” on

page 14
v “What is Documentum?” on page 31
v “What is Excel?” on page 69
v “What is BLAST?” on page 85
v “What is XML?” on page 111

Related tasks:

v “Adding table-structured files to a federated system” on page 16

Types of table-structured files

Table-structured files can be sorted or unsorted.

© Copyright IBM Corp. 2001, 2002 13

Sorted files
DRUGDATA1.TXT contains sorted records. The file is sorted by the first field,
the drug’s unique ID number. This field is the primary key because it is
unique for each drug. Sorted files must be sorted in ascending order.
234,DrugnameA,Manufacturer1
332,DrugnameB,Manufacturer2
333,DrugnameC,Manufacturer2

Unsorted files
DRUGDATA2.TXT contains unsorted records. There is no order to the way the
records are listed in the file.
332,DrugnameB,Manufacturer2
234,DrugnameA,Manufacturer1
333,DrugnameC,Manufacturer2

The wrapper can search sorted data files much more efficiently than
non-sorted files.

Related concepts:

v “What are table-structured files?” on page 13
v “How DB2 Life Sciences Data Connect works with table-structured files” on

page 14

Related tasks:

v “Adding table-structured files to a federated system” on page 16

How DB2 Life Sciences Data Connect works with table-structured files

Using a module called a wrapper, DB2 Life Sciences Data Connect can process
SQL statements that query data in a table-structured file as if it were
contained in an ordinary relational table or view. This enables data in a
table-structured file to be joined with relational data or data in other
table-structured files. This process is illustrated in Figure 3 on page 15.

14 DB2 LSDC Planning, Installation, and Configuration Guide

For example, suppose that the table-structured file DRUGDATA2.TXT is located
on your computer in your laboratory. Trying to query this data and match it
up with other tables from other data sources that you use can be tedious.

After you register DRUGDATA2.TXT with DB2 Life Sciences Data Connect, the file
behaves as if it is a relational data source. You can now query the file together
with other relational and non-relational data sources and analyze the data
together.

For example, you could run the following query:
SELECT * FROM DRUGDATA2 ORDER BY DCODE

This query produces the following results.

Dcode Drug Manufacturer

234 DrugnameA Manufacturer1

332 DrugnameB Manufacturer2

333 DrugnameC Manufacturer2

Related concepts:

v “What are table-structured files?” on page 13
v “Types of table-structured files” on page 13

Figure 3. How the table–structured file wrapper works

Chapter 3. Table-structured files as data sources 15

Related tasks:

v “Adding table-structured files to a federated system” on page 16

Adding table-structured files to a federated system

Procedure:

To add a data source for a table-structured file to a federated server:
1. Register the wrapper using the CREATE WRAPPER command.
2. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
3. Register the server using the CREATE SERVER command.
4. Register nicknames using the CREATE NICKNAME command for all

table-structured files.

The commands can be run from the DB2 Command Line Processor.

Related tasks:

v “Registering the table-structured file wrapper” on page 16
v “Setting the DB2_DJ_COMM environment variable for the table-structured

file wrapper” on page 17
v “Registering the server for table-structured files” on page 18
v “Registering nicknames for table-structured files” on page 19
v “Adding Documentum to a federated system” on page 33
v “Adding Excel to a federated system” on page 71
v “Adding BLAST to a federated system” on page 90
v “Adding XML to a federated system” on page 115

Registering the table-structured file wrapper

This task is part of the main task for Adding table-structured files to a federated
system. You must register the wrapper in order to access a data source.
Wrappers are mechanisms that federated servers use to communicate with
and retrieve data from data sources. Wrappers are installed on your system as
library files.

Procedure:

To register the wrapper, use the CREATE WRAPPER statement to specify
which wrapper will be used to access table-structured files.

16 DB2 LSDC Planning, Installation, and Configuration Guide

For example, to register a wrapper on AIX, run the following statement:
CREATE WRAPPER laboratory_flat_files LIBRARY ’libdb2lsfile.a’

OPTIONS(DB2_FENCED ’N’);

In this example, laboratory_flat_files is the name chosen for the wrapper.
This name must be unique within the database in which the wrapper is being
registered. The required library name for the table-structured file wrapper on
AIX is libdb2lsfile.a.

The library name is installed as libdb2lsfile.a by default, but it might have
been customized during installation. Check with your system administrator
for the correct name.

For a table of default library filenames for the table-structured file wrapper by
supported platform, see ″After installing DB2 Life Sciences Data Connect″ in
the Related tasks section below. For more information on the CREATE
WRAPPER statement, see the DB2 SQL Reference.

The next task in this sequence of tasks is Setting the DB2_DJ_COMM
environment variable for the table-structured file wrapper.

Related tasks:

v “Setting the DB2_DJ_COMM environment variable for the table-structured
file wrapper” on page 17

v “Registering the Documentum wrapper” on page 36
v “Registering the Excel wrapper” on page 71
v “Registering the BLAST wrapper” on page 95
v “Registering the XML wrapper” on page 116

Setting the DB2_DJ_COMM environment variable for the table-structured file
wrapper

This task is part of the main task for Adding table-structured files to a federated
system. To improve performance when table-structured files are accessed, set
the DB2_DJ_COMM environment variable. This variable determines whether
the federated server loads the wrapper upon initialization.

Procedure:

To set the DB2_DJ_COMM environment variable, submit the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

For example:

Chapter 3. Table-structured files as data sources 17

db2set DB2_DJ_COMM=’libdb2lsfile.a’

Ensure that there are no spaces on either side of the equal sign (=).

There is overhead associated with loading the wrapper libraries during
database startup. To avoid this overhead, only specify libraries you intend to
access.

For more information about the DB2_DJ_COMM environment variable, see
the DB2 Administration Guide.

The next task in this sequence of tasks is Registering the server for
table-structured files.

Related tasks:

v “Registering the table-structured file wrapper” on page 16
v “Registering the server for table-structured files” on page 18
v “Setting the DB2_DJ_COMM environment variable for the Documentum

wrapper” on page 37
v “Setting the DB2_DJ_COMM environment variable for the BLAST wrapper”

on page 96
v “Setting the DB2_DJ_COMM environment variable for the XML wrapper”

on page 116

Registering the server for table-structured files

This task is part of the main task for Adding table-structured files to a federated
system. After the wrapper is registered, you must register a corresponding
server.

Procedure:

To register the table-structured file server to the federated system, use the
CREATE SERVER statement. For example:
CREATE SERVER biochem_lab WRAPPER laboratory_flat_files

In this example, biochem_lab is the name assigned to the table-structured file
server. The name must be unique to the database in which the server is being
registered.

For more information about the CREATE SERVER statement, see the DB2 SQL
Reference.

18 DB2 LSDC Planning, Installation, and Configuration Guide

The next task in this sequence of tasks is Registering nicknames for
table-structured files.

Related tasks:

v “Setting the DB2_DJ_COMM environment variable for the table-structured
file wrapper” on page 17

v “Registering nicknames for table-structured files” on page 19
v “Registering the server for Documentum data sources” on page 38
v “Registering the server for an Excel data source” on page 72
v “Registering the server for a BLAST data source” on page 97
v “Registering the server for an XML data source” on page 117

Registering nicknames for table-structured files

This task is part of the main task for Adding table-structured files to a federated
system. After you register a server, you must register a corresponding
nickname. Nicknames are used when you refer to atable-structured file data
source in a query.

Procedure:

To register a nickname, use the CREATE NICKNAME statement for each
table-structured file that you want to access.

The syntax for the CREATE NICKNAME statement is:

�� CREATE NICKNAME nickname (�

,

column-name data-type column-option �

�) FOR SERVER server-name OPTIONS (FILE_PATH ’path’ �

�
, COLUMN_DELIMITER ’delimiter’ , SORTED ’Y’

’N’

�

�
(1)

, KEY_COLUMN ’key-column-name’

�

Chapter 3. Table-structured files as data sources 19

�
(1)

, VALIDATE_DATA_FILE ’Y’
’N’

) �

data-type:

SMALLINT
INTEGER
INT

FLOAT
(integer)

REAL
DOUBLE

PRECISION
DECIMAL
DEC (integer)
NUMERIC , integer
NUM
CHARACTER
CHAR (integer)

VARCHAR (integer)

column-option:

NOT NULL

Notes:

1 Not allowed for unsorted files. Optional for sorted files.

nickname
A unique nickname for the table-structured file to be accessed. It must
be distinct from all other nicknames, tables, and views in the schema
in which it is being registered.

column-name
A unique name given to each field in the table-structured file. Follow
each column name with its data type. Only columns of type CHAR,
VARCHAR, SMALLINT, INTEGER, FLOAT, DOUBLE, REAL, and
DECIMAL are supported.

SMALLINT
For a small integer.

INTEGER or INT
For a large integer.

20 DB2 LSDC Planning, Installation, and Configuration Guide

FLOAT(integer)
For a single or double precision floating-point number, depending on
the value of integer. The value of integer must be in the range 1
through 53. The values 1 through 24 indicate single precision and the
values 25 through 53 indicate double precision.

REAL For single precision floating-point.

DOUBLE or DOUBLE PRECISION
For double precision floating-point.

FLOAT
For double precision floating-point.

DECIMAL(precision-integer, scale-integer) or DEC(precision-integer, scale-integer)
For a decimal number.

The first integer is the precision of the number; that is, the total
number of digits. This value can range from 1 to 31.

The second integer is the scale of the number; that is, the number of
digits to the right of the decimal point. This value can range from 0 to
the precision of the number.

If precision and scale are not specified, the default values of 5,0 are
used.

The words NUMERIC and NUM can be used as synonyms for
DECIMAL and DEC.

CHARACTER(integer) or CHAR(integer) or CHARACTER or CHAR
For a fixed-length character string of length integer, which can range
from 1 to 254. If the length specification is omitted, a length of 1
character is assumed.

VARCHAR(integer)
For a varying-length character string of maximum length integer,
which can range from 1 to 32672.

NOT NULL
Prevents the column from containing null values.

server-name
Identifies the server you registered using the CREATE SERVER
statement. For more information on the CREATE SERVER statement,
see the Related Links section below. This server will be used to access
the table-structured file.

’path’ The fully qualified path to the table-structured file to be accessed,
enclosed in single quotation marks. The data file must be a standard
file or a symbolic link, rather then a pipe or another non-standard file

Chapter 3. Table-structured files as data sources 21

type. Data files must be readable by the DB2 instance owner. For more
information on instance owners, see the DB2 Administration Guide.

SORTED
Specifies whether the data source file is sorted or unsorted. This
option accepts either ’Y’, ’y’, ’n’, or ’N’. It has a default value of ’N’.

Note: If you specify that the data source is sorted, it is recommended
you set VALIDATE_DATA_FILE to ’Y’.

’delimiter’
The delimiter used to separate columns of the table-structured file,
enclosed in single quotation marks. Only single character delimiters
are allowed. If no column delimiter is defined, the column delimiter
defaults to the comma. A single quote cannot be used as a delimiter.
The column delimiter cannot exist as valid data for a column. For
example, a column delimiter of a comma cannot be used if one of the
columns contains data with embedded commas.

’key-column-name’
The name of the column in the file that forms the key on which the
file is sorted, enclosed in single quotation marks. Use this option for
sorted files only.

Only single-column keys are supported. The value must be the name
of a column defined in the CREATE NICKNAME statement. The
column must be sorted in ascending order. If the value is not specified
for a sorted nickname, it defaults to the first column in the nicknamed
file. It is recommended that the key column be designated not
nullable by adding the NOT NULL option to its definition in the
nickname statement. For example:
CREATE NICKNAME tox (tox_id INTEGER NOT NULL, toxicity VARCHAR(100))
FOR SERVER tox_server1

OPTIONS (FILE_PATH’/tox_data.txt’, SORTED ’Y’)

CREATE NICKNAME weights (mol_id INTEGER, wt VARCHAR(100) NOT NULL)
FOR SERVER wt_server

OPTIONS (FILE_PATH’/wt_data.txt’, SORTED ’Y’, KEY_COLUMN ’WT’)

Note: This option is case-sensitive. However, DB2 folds column
names to upper case unless the column is defined with double
quotes. The following example will not work properly because
the empno column will be folded to uppercase by DB2, and the
empno key column will be submitted in lowercase. Thus the
column designated as the key will not be found.
CREATE NICKNAME depart (
empno char(6) NOT NULL)
FOR SERVER DATASTORE
OPTIONS(FILE_PATH’data.txt’, SORTED ’Y’, KEY_COLUMN ’empno’);

22 DB2 LSDC Planning, Installation, and Configuration Guide

VALIDATE_DATA_FILE
For sorted files, this option specifies whether the wrapper verifies that
the key column is sorted in ascending order and checks for NULL
keys. The only valid values for this option are ’Y’ or ’N’, enclosed in
single quotation marks. The check is done once at registration time. If
this option is not specified, then no validation takes place.

The following example shows a CREATE NICKNAME statement for the
table-structured file DRUGDATA1.TXT described in ″What are table-structured
files?″ listed in the Related Links section below:
CREATE NICKNAME DRUGDATA1(Dcode Integer NOT NULL, Drug CHAR(20),

Manufacturer CHAR(20))
FOR SERVER biochem_lab OPTIONS(FILE_PATH ’/usr/pat/DRUGDATA1.TXT’,
COLUMN_DELIMITER ’,’, SORTED ’Y’, KEY_COLUMN ’DCODE’, VALIDATE_DATA_FILE ’Y’)

See the DB2 SQL Reference for more information about the CREATE
NICKNAME statement. For more information about nicknames, see the DB2
Administration Guide.

There are no further tasks in this sequence of tasks.

Related tasks:

v “After installing DB2 Life Sciences Data Connect” on page 10
v “Registering the server for table-structured files” on page 18
v “Registering nicknames for Documentum data sources” on page 40
v “Registering nicknames for Excel data sources” on page 73
v “Registering nicknames for BLAST data sources” on page 98
v “Registering nicknames for XML data sources” on page 118
v Chapter 8, “Specifying costing nickname options” on page 133

Wrapper limitations and considerations for the table-structured file wrapper

v Passthru sessions are not allowed when using the wrapper.
v Multi-column keys are not allowed.
v Sorted files must be in ascending order only. Sorting in descending order is

not supported.
v The wrapper does not enforce the NOT NULL constraint, but DB2 does. If

you create a nickname and attach a NOT NULL constraint on a column and
then select a row containing a null value for the column, DB2 will issue a
SQL0407N error stating that you can’t assign a NULL value to a NOT
NULL column.

Chapter 3. Table-structured files as data sources 23

The exception to this rule is for sorted nicknames. The key column for
sorted nicknames cannot be NULL. If a NULL key column is found for a
sorted nickname, the SQL1822N error is issued, stating that the key column
is missing.

v On DB2 Universal Database Enterprise Server Edition, any table-structured
file for which a nickname has been created must be accessible with the
same path name from each node. The file does not have to be on a DB2
Universal Database node as long as it can be accessed from any node with
a common path.

Related reference:

v “File limitations and considerations for the table-structured file wrapper”
on page 24

v “Limitations and considerations for the Documentum wrapper” on page 60
v “Wrapper limitations for the Excel wrapper” on page 77
v “Excel file limitations” on page 78
v “Limitations and considerations for the XML wrapper” on page 126

File limitations and considerations for the table-structured file wrapper

v Files are limited to one record per line.
v Each record must have an equal number of delimited columns.
v Each record must be terminated by the standard line-termination

character(s) for the platform on which the wrapper is installed.
v The column delimiter must be consistent throughout the file.
v A null value is represented by two delimiters next to each other or a

delimiter followed by a line terminator, if the NULL field is the last one on
the line.

v The radix character is determined by the RADIXCHAR item of the
LC_NUMERIC National Language Support category.

v Sorted data sources must be sorted in ascending order according to the
collation sequence for the current locale, as defined by the settings in the
LC_COLLATE National Language Support category.

v The database codepage must match the file’s character set; otherwise, you
could get unexpected results.

v Files containing multibyte characters are not supported.
v If a non-numeric field is too long for its column type, the excess data is

truncated.
v If a decimal field in the file has more digits after the radix char than are

allowed by the scale parameter of its column type, the excess data is
truncated.

v The maximum line length is 32768.

24 DB2 LSDC Planning, Installation, and Configuration Guide

Related reference:

v “Wrapper limitations and considerations for the table-structured file
wrapper” on page 23

v “Limitations and considerations for the Documentum wrapper” on page 60
v “Excel file limitations” on page 78
v “Limitations and considerations for the XML wrapper” on page 126

File access control model for the table-structured file wrapper

The database management system will access table-structured files with the
authority of the DB2 instance owner. The wrapper can only access files that
can be read by this user ID (or group ID). The authorization ID of the
application (the ID that establishes the connection to the federated database) is
not relevant.

Related reference:

v “Access control for the Documentum wrapper” on page 62
v “File access control model for the Excel wrapper” on page 78

Optimization tips and considerations for the table-structured file wrapper

v The system can search sorted data files much more efficiently than
non-sorted files.

v For sorted files, you can improve performance by specifying a value or
range for the key column when submitting a query.

v Statistics for nicknames of table-structured files must be updated manually
by updating the SYSSTAT and SYSCAT views. For more information on
manually updating SYSSTAT and SYSCAT views, see the DB2
Administration Guide.

Related reference:

v “Optimization tips for the BLAST wrapper” on page 108

Messages for the table-structured file wrapper

This section lists and describes messages you might encounter while working
with the wrapper for table-structured files. For more information on messages,
see the DB2 Message Reference.

Chapter 3. Table-structured files as data sources 25

Table 5. Messages issued by the wrapper for table-structured files

Error Code Message Explanation

SQL0405N The numeric literal
″<literal>″ is not valid
because its value is out of
range.

A column in the data file, or a predicate
value in an SQL statement, contains a
value that is out of the possible range for
that data type. Correct the data file or
redefine the column to a more appropriate
type.

SQL0408N A value is not compatible
with the data type of it’s
assignment target. Target
name is ″<column_name>″.

A column in the data file contains
characters that are invalid for that data
type. Correct the data file or redefine the
column to a more appropriate type.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″Data
source path is NULL″.)

Contact IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″Key
Column retrieval failure″.)

Contact IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″STAT
failed on data source.
ERRNO =
<error_number>″.)

Ensure that you have the proper directory
permissions. Ensure that the file exists.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason ″No
column info found″.)

Contact IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent
SQL statements can be
processed. (Reason
″Unsupported operator″.)

Contact IBM Software Support.

26 DB2 LSDC Planning, Installation, and Configuration Guide

Table 5. Messages issued by the wrapper for table-structured files (continued)

Error Code Message Explanation

SQL1816N Wrapper
″<wrapper_name>″ cannot
be used to access the ″type″
of data source (″<type>″ ″″)
that you are trying to define
to the federated database.

The server type was invalid. No server
type should be specified in the CREATE
SERVER statement. Remove the TYPE
keyword and value and rerun it.

SQL1822N Unexpected error code
″ERRNO =
<error_number>″ received
from data source
″<server_name>″.
Associated text and tokens
are ″Unable to read file″.

Check the value of the error number. Make
sure that the file can be read by the DB2
instance owner. Then rerun the SQL
command.

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″Data source is a
non-standard file″.

The data source file is a directory, socket,
or FIFO. Only standard files can be
accessed as data source. Change the
FILE_PATH option to point to a valid file
and reissue the SQL command.

SQL1822N Unexpected error code
″ERRNO =
<error_number>″ received
from data source
″<server_name>″.
Associated text and tokens
are ″File open error″.

The wrapper was unable to open the file.
Check the error number to determine why
the error occurred. Correct the problem
with the data source and reissue the SQL
command.

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″Key column missing″.

A record retrieved from the data source
was missing the key field. The key column
must not be null. Correct the data, or
register the file with an unsorted
nickname.

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″File not sorted″.

The file was not sorted on the key column.
Do one of the following: change the
KEY_COLUMN option to point to the
correct column; resort the data file; or
register the nickname as an unsorted
nickname.

Chapter 3. Table-structured files as data sources 27

Table 5. Messages issued by the wrapper for table-structured files (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″Key exceeds definition
size″.

The key column field read from the data
source was larger than the DB2 column
definition which could cause the wrapper
search routines to function incorrectly.
Correct the data or correct the nickname
definition, and reregister the nickname.

SQL1822N Unexpected error code
″Data Error″ received from
data source
″<server_name>″.
Associated text and tokens
are ″Line in data file
exceeds 32k″.

A line in the data file exceeded the
maximum line length allowed by the
wrapper. The line length cannot be greater
than 32768. Shorten the length of the line
in the data file.

SQL1823N No data type mapping
exists for data type
″<data_type>″ from server
″<server_name>″.

The nickname was defined with an
unsupported data type. Redefine the
nickname using only supported data types.

SQL1881N ″<option_name>″ is not a
valid ″<component>″ option
for ″<object_name>″.

The listed value is not a valid option for
the listed object. Remove or change the
invalid option then resubmit the SQL
statement.

SQL1882N The ″Nickname″ option
″COLUMN_DELIMITER″
cannot be set to
″<delimiter>″ for
″<nickname_name>″.

The column delimiter was more than one
character long. Redefine the option with a
single character. Then rerun the SQL
statement command.

SQL1882N The ″Nickname″ option
″KEY_COLUMN″ cannot be
set to ″<column_name>″ for
″<nickname_name>″.

The column selected as the key column is
not defined for this nickname. Correct the
KEY_COLUMN option to be one of the
sorted columns for this nickname, then
reissue the SQL command.

SQL1882N The ″Nickname″ option
″VALIDATE_DATA_FILE″
cannot be set to
″<option_value>″ for
″<nickname_name>″.

The option value was invalid. Valid values
are ″Y″ or ″N″. Correct the option and
register the nickname again.

SQL1883N ″<option_name>″ is a
required ″<component>″
option for ″<object_name>″.

A required option for the wrapper was
missing from the SQL statement. Add the
required option and resubmit the SQL
statement.

28 DB2 LSDC Planning, Installation, and Configuration Guide

Table 5. Messages issued by the wrapper for table-structured files (continued)

Error Code Message Explanation

SQL30090N Operation invalid for
application execution
environment. Reason code =
″21″.

You attempted a passthru session. The
table-structured file wrapper does not
support passthru sessions.

Related reference:

v “Messages for the Documentum wrapper” on page 62
v “Messages for the Excel wrapper” on page 78
v “Messages for the BLAST wrapper” on page 109
v “Messages for the XML wrapper” on page 127

Chapter 3. Table-structured files as data sources 29

30 DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 4. Documentum as a data source

This chapter explains what Documentum is, how to add Documentum data
sources to your federated system, and lists the error messages associated with
the Documentum wrapper.

What is Documentum?

Documentum is document management software that provides management
of document content and attributes such as check-in, check-out, workflow, and
version management. The Documentum product is a three-tier, client-server
system built on top of a relational database.

A Docbase is a Documentum repository that stores document content,
attributes, relationships, versions, renditions, formats, workflow, and security.
Documentum Query Language (DQL), an extended SQL dialect, is used to
query Documentum data. A Docbase is the equivalent of an Oracle instance or
a DB2® database plus document content files. The metadata is stored in the
underlying relational database management system (RDBMS), and the content
is stored as binary large objects (BLOBs) in the database or as files stored
within the file-system of the server system. For more information on
Documentum, refer to the Documentum manuals.

The wrapper for Documentum allows you to add a Documentum data source
to a DB2 federated system. By adding the Documentum data source to a
federated system, you can use SQL statements to access and query objects and
registered tables in a Documentum Docbase. You can then integrate this data
with other data sources in your federated system without having to move the
data out of the native data source. The Documentum wrapper uses a client
library to interface with the Documentum server. The Documentum wrapper
provides access to two versions of the Documentum server: EDMS 98 (also
referred to as version 3) and 4i. Figure 4 on page 32 illustrates how the
Documentum wrapper works.

© Copyright IBM Corp. 2001, 2002 31

After the Documentum wrapper is registered, you can map Documentum
Docbase objects and registered tables as relational tables. This is done by
mapping Docbase attributes to column names in a DB2 relational table.

For example, Table 6 lists a subset of attributes for the Documentum Docbase
default document type, dm_document, along with the associated data. You
have determined that this attribute subset is important to you, and you would
like to connect these attributes into your federated database system. You
named this subset of data DrugAB_data.

Table 6. DrugAB_data

Title Subject Authors Keywords

The effect of drug A on
rabbits

Drug A Curran, L. rabbits, drug A

Toxicity results for drug A Drug A Abelite, P.,
McMurtrey, K.

toxicity, drug A

Drug B interactions Drug B DeNiro, R., Stone, S. interactions, drug B

Chemical structure of
drug B

Drug B Boyslim, F. structure, drug B

After you register the Documentum wrapper, the data can be queried using
SQL statements.

The following query displays the titles and authors whose subject is Drug A.
The result table is shown in Table 7 on page 33.

Figure 4. How the Documentum wrapper works

32 DB2 LSDC Planning, Installation, and Configuration Guide

SELECT title, authors
FROM drugAB_data
WHERE subject = ’Drug A’

Table 7. Query results

Title Authors

The effect of drug A on rabbits Curran, L.

Toxicity results for drug A Abelite, P., McMurtrey, K.

Related concepts:

v “What are table-structured files?” on page 13
v “What is Excel?” on page 69
v “What is BLAST?” on page 85
v “What is XML?” on page 111

Related tasks:

v “Adding Documentum to a federated system” on page 33

Adding Documentum to a federated system

Procedure:

To add the Documentum data source to a federated server:
1. Link to the Documentum client libraries.
2. Point to Documentum’s client dmcl.ini file
3. Register the wrapper using the CREATE WRAPPER statement.
4. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
5. Register the server using the CREATE SERVER statement.
6. Give users access to the data source by using the CREATE USER

MAPPING statement.
7. Register nicknames using the CREATE NICKNAME statement.
8. Create custom functions using the CREATE FUNCTION statement.

The statements can be run from the DB2 Command Line Processor. Once
registered, you can run queries against the data source.

Related tasks:

v “Linking to Documentum client libraries (AIX and Solaris Operating
Environment only)” on page 34

Chapter 4. Documentum as a data source 33

v “Pointing to Documentum’s client dmcl.ini file” on page 35
v “Registering the Documentum wrapper” on page 36
v “Setting the DB2_DJ_COMM environment variable for the Documentum

wrapper” on page 37
v “Registering the server for Documentum data sources” on page 38
v “Mapping users (Documentum wrapper)” on page 40
v “Registering nicknames for Documentum data sources” on page 40
v “Registering custom functions for Documentum data sources” on page 49
v “Adding table-structured files to a federated system” on page 16
v “Adding Excel to a federated system” on page 71
v “Adding BLAST to a federated system” on page 90
v “Adding XML to a federated system” on page 115

Linking to Documentum client libraries (AIX and Solaris Operating Environment
only)

This task is part of the main task for Adding Documentum to a federated system.
To enable access to Documentum data sources, the DB2 federated system
must be link-edited to the client libraries. The link-edit process creates a
wrapper library for each data source with which the federated server
communicates. When you run the djxlinkDctm script you create the
Documentum wrapper library.

Procedure:

To run the djxlinkDctm script:
1. Set the LSDC_DMCL environment variable to point to the directory where

the Documentum client library is located.
For example:
export LSDC_DMCL=/usr/documentum/product/3.1.7

2. Type the following command as root:
ksh djxlinkDctm

Note: The djxlinkDctm command must be rerun after applying a DB2
Universal Database FixPak.

The next task in this sequence of tasks is Pointing to Documentum’s client
dmcl.ini file.

Related tasks:

v “Pointing to Documentum’s client dmcl.ini file” on page 35

34 DB2 LSDC Planning, Installation, and Configuration Guide

Pointing to Documentum’s client dmcl.ini file

This task is part of the main task for Adding Documentum to a federated system.
Access to Documentum Docbases are controlled through the Documentum
client’s dmcl.ini file. A DB2 instance must have its environment variables set
to the Documentum client’s dmcl.ini file in order to gain access to a
Documentum Docbase.

Procedure:

To set the environment variables:
1. Edit the db2dj.ini file, and set one of the following environment variables:

DOCUMENTUM=<path>
DMCL_CONFIG=<path>/dmcl.ini

where <path> is the fully qualified directory that contains the dmcl.ini file
that you want to use.

The default path to the location of Documentum’s dmcl.ini file is
/pkgs/documentum. If both lines are included, DMCL_CONFIG is used.

On AIX and Solaris Operating Environment, the db2dj.ini file is located in
$HOME/sqllib/cfg.

On Windows, the db2dj.ini file is in x:\sqllib\cfg where x: represents the
drive on which the sqllib directory is located.

Note: Ensure that the name of a docbroker, to which all accessible
Docbases for the DB2 instance report, is specified in the dmcl.ini file
as shown in Figure 5 on page 36.

Chapter 4. Documentum as a data source 35

2. Recycle the DB2 instance by issuing the following commands:
db2stop
db2start

The next task in this sequence of tasks is Registering the Documentum wrapper.

Related tasks:

v “Setting the DB2_DJ_COMM environment variable for the table-structured
file wrapper” on page 17

v “Linking to Documentum client libraries (AIX and Solaris Operating
Environment only)” on page 34

v “Setting the DB2_DJ_COMM environment variable for the Documentum
wrapper” on page 37

v “Setting the DB2_DJ_COMM environment variable for the BLAST wrapper”
on page 96

v “Setting the DB2_DJ_COMM environment variable for the XML wrapper”
on page 116

Registering the Documentum wrapper

This task is part of the main task for Adding Documentum to a federated system.
You must register the wrapper in order to access a data source. Wrappers are
mechanisms that federated servers use to communicate with and retrieve data
from data sources. Wrappers are installed on your system as library files.

Procedure:

################## DOCUMENTUM CLIENT CONFIGURATION FILE ######################
#
Copyright Documentum 1994.
Version 3.1 of the Documentum Server.
#
A generated client init file for the Documentum Server.
#
The only REQUIRED information in this file is the
[DOCBROKER_PRIMARY] section and an entry for host.
The host value should be the name of host on which
your network wide DocBroker is running

[DOCBROKER_PRIMARY]
host = server16.comp2.big.com

Figure 5. Sample dmcl.ini file with docbroker name specified

36 DB2 LSDC Planning, Installation, and Configuration Guide

To register the Documentum wrapper, submit the CREATE WRAPPER
statement.

For example, to create a Documentum wrapper on AIX called Dctm_Wrapper
from the default library file, libdb2lsdctm.a, submit the following statement:
CREATE WRAPPER Dctm_Wrapper LIBRARY ’libdb2lsdctm.a’

OPTIONS(DB2_FENCED ’N’);

For a table of default library filenames for the Documentum wrapper by
supported platform, see ″After installing DB2 Life Sciences Data Connect″ in
the Related tasks section below. For more information on the CREATE
WRAPPER statement, see the DB2 SQL Reference.

The next task in this sequence of tasks is Setting the DB2_DJ_COMM
environment variable for the Documentum wrapper.

Related tasks:

v “After installing DB2 Life Sciences Data Connect” on page 10
v “Registering the table-structured file wrapper” on page 16
v “Setting the DB2_DJ_COMM environment variable for the Documentum

wrapper” on page 37
v “Registering the Excel wrapper” on page 71
v “Registering the BLAST wrapper” on page 95
v “Registering the XML wrapper” on page 116

Setting the DB2_DJ_COMM environment variable for the Documentum wrapper

This task is part of the main task for Adding Documentum to a federated system.
To improve performance when Documentum data sources are accessed, set
the DB2_DJ_COMM environment variable. This variable determines whether
the federated server loads the wrapper upon initialization.

Procedure:

To set the DB2_DJ_COMM environment variable, submit the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

For example:
db2set DB2_DJ_COMM=’libdb2lsdctm.a’

Ensure that there are no spaces on either side of the equal sign (=).

Chapter 4. Documentum as a data source 37

There is overhead associated with loading the wrapper libraries during
database startup. To avoid this overhead, only specify libraries you intend to
access.

For more information about the DB2_DJ_COMM environment variable, see
the DB2 Administration Guide.

The next task in this sequence of tasks is Registering the server for Documentum
data sources.

Related tasks:

v “Setting the DB2_DJ_COMM environment variable for the table-structured
file wrapper” on page 17

v “Registering the Documentum wrapper” on page 36
v “Registering the server for Documentum data sources” on page 38
v “Setting the DB2_DJ_COMM environment variable for the BLAST wrapper”

on page 96
v “Setting the DB2_DJ_COMM environment variable for the XML wrapper”

on page 116

Registering the server for Documentum data sources

This task is part of the main task for Adding Documentum to a federated system.
After the wrapper is registered, you must register a corresponding server.

Procedure:

To register the Documentum server to the federated system, use the CREATE
SERVER statement.

For example, suppose there is a server called Dctm_Server1 for the
Dctm_Wrapper wrapper created in the associated CREATE WRAPPER
statement. Suppose that server contains a Docbase that runs on AIX and uses
Oracle to store data. To register the server, submit the following statement:
CREATE SERVER Dctm_Server1
TYPE DCTM
VERSION 3
WRAPPER Dctm_Wrapper
OPTIONS(NODE ’Dctm_Docbase’,

OS_TYPE ’AIX’,
RDBMS_TYPE ’ORACLE’);

Arguments

TYPE Specifies the type of the data source. For Documentum, the type is
DCTM. This argument is required.

38 DB2 LSDC Planning, Installation, and Configuration Guide

VERSION
Specifies the version of the data source. For EDMS98, the value is ’3’.
For 4i, the value is ’4’. This argument is required.

WRAPPER
Specifies the name of the wrapper associated with this server. This
argument is required.

Options

CONTENT_DIR
Specifies the name of the locally-accessible root directory for storing
content files retrieved by the GET_FILE, GET_FILE_DEL,
GET_RENDITION, and GET_RENDITION_DEL pseudo columns. It
must be writable by all users who can use these pseudo columns. Its
default value is /tmp. This option is optional.

NODE
Specifies the actual name of the Documentum Docbase. This option is
required.

OS_TYPE
Specifies the Docbase server’s operating system. Valid values are AIX,
SOLARIS, and WINDOWS. This option is required.

RDBMS_TYPE
Specifies the RDBMS used by the Docbase. Valid values are DB2,
INFORMIX, ORACLE, SQLSERVER or SYBASE. This option is
required.

TRANSACTIONS
Specifies the server transaction mode. The valid values are:
v NONE — no transactions are enabled.
v QUERY — transactions are enabled only for Dctm_Query methods.
v ALL — transactions are enabled for the Dctm_Query method. ALL

has the same function as QUERY in this release.

The default is QUERY. This option is optional.

For more information on the CREATE SERVER statement, see the DB2 SQL
Reference.

The next task in this sequence of tasks is Mapping users (Documentum wrapper).

Related tasks:

v “Registering the server for table-structured files” on page 18
v “Setting the DB2_DJ_COMM environment variable for the Documentum

wrapper” on page 37

Chapter 4. Documentum as a data source 39

v “Mapping users (Documentum wrapper)” on page 40
v “Registering the server for an Excel data source” on page 72
v “Registering the server for a BLAST data source” on page 97
v “Registering the server for an XML data source” on page 117

Mapping users (Documentum wrapper)

This task is part of the main task for Adding Documentum to a federated system.
You must map users to the previously defined servers to give them access to
the data source.

Procedure:

To map users to your federated servers, use the CREATE USER MAPPING
statement.

For example, the following CREATE USER MAPPING statement maps user
Chuck to user Charles on the Dctm_Server1 server.
CREATE USER MAPPING FOR Chuck SERVER Dctm_Server1
OPTIONS(REMOTE_AUTHID ’Charles’, REMOTE_PASSWORD ’Charles_pw’);

You can also define your own user mapping. In the following example, USER
is a keyword meaning the current user, not a user named USER.
CREATE USER MAPPING FOR USER SERVER Dctm_Server1
OPTIONS(REMOTE_AUTHID ’Lisa’, REMOTE_PASSWORD ’Lisa_pw’)

For more information on the CREATE USER MAPPING statement, see the
DB2 SQL Reference.

The next task in this sequence of tasks is Registering nicknames for Documentum
data sources.

Related tasks:

v “Registering the server for Documentum data sources” on page 38
v “Registering nicknames for Documentum data sources” on page 40

Registering nicknames for Documentum data sources

This task is part of the main task for Adding Documentum to a federated system.
After you have registered a server and mapped the users to the server, you
must register corresponding nicknames. Nicknames are used when you refer
to a Documentum data source in a query.

40 DB2 LSDC Planning, Installation, and Configuration Guide

Procedure:

To register nicknames, use the CREATE NICKNAME statement to create a
nickname for each Docbase for each object type or registered table of interest.

The syntax for the CREATE NICKNAME statement for Documentum is:

�� CREATE NICKNAME nickname �

,

(column-name column-information) �

� FOR SERVER server-name OPTIONS (
ALL_VERSIONS ’Y’ ,

’N’

�

�
FOLDERS ’folder_string’ , IS_REG_TABLE ’Y’ ,

’N’

�

� REMOTE_OBJECT ’remote_object_type’) �

column-information:

data-type column-option
nickname-column-options

data-type:

SMALLINT
INTEGER
INT

DOUBLE
PRECISION

CHARACTER
CHAR (integer)

VARCHAR (integer)
DATE
TIMESTAMP

column-option:

NOT NULL

Chapter 4. Documentum as a data source 41

nickname-column-options:

OPTIONS (
REMOTE_NAME ’attribute_name’ , DELIMITER ’delimiter’ ,

�

�
IS_REPEATING ’Y’ ,

’N’
ALL_VALUES ’Y’

’N’

For more information on the CREATE NICKNAME statement, see the DB2
SQL Reference.

Column options

NOT NULL
All single-valued columns except those defined as TIMESTAMP and
DATE must be defined as NOT NULL. Repeating attributes must not
be defined as NOT NULL in nicknames.

Nickname column options
Nickname column option values must be enclosed in single quotation marks.

ALL_VALUES
Specifies that all values of a repeating attribute will be returned,
separated by the specified delimiter. If this option is missing or is ’N’,
then only the last value of a repeating attribute will be returned. As
noted under DELIMITER, ALL_VALUES may only be specified for
VARCHAR columns for which the IS_REPEATING option is ’Y’ (and
is invalid when IS_REG_TABLE = ’Y’).

DELIMITER
Specifies the delimiter string to be used when concatenating multiple
values of a repeating attribute. The delimiter can be one or more
characters. The default delimiter is a comma. This option is only valid
for attributes of objects with data type VARCHAR where the
IS_REPEATING option is set to ’Y’. This option is optional.

IS_REPEATING
Indicates if the column is multi-valued. Valid values are ’Y’ and ’N’.
The default is ’N’. This option is optional.

REMOTE_NAME
Specifies the name of the corresponding Documentum attribute or
column. This option maps remote attribute or column names to local
DB2 column names. It defaults to the DB2 column name. This option
is optional.

Nickname options
Nickname option values must be enclosed in single quotation marks.

42 DB2 LSDC Planning, Installation, and Configuration Guide

ALL_VERSIONS
Specifies whether all object versions will be searched. The valid values
are ’y’, ’Y’, ’n’, and ’N’. The default value of ’N’ means that only the
current object versions are included in query processing. This option
is invalid when IS_REG_TABLE = ’Y’. This option is optional.

FOLDERS
Specifies a string that contains one or more logically-combined and
syntactically-correct Documentum FOLDER predicates. Specifying
FOLDER predicates restricts the set of documents represented by this
nickname to those in the designated folders.

When you specify this option, enclose the entire value of the
FOLDERS option in single quotes and use double quotes in place of
the single quotes within the string.

For example, if you want to insert:
FOLDER(’/Tools’,DESCEND) OR FOLDER(’/Cars’)

Specify the following FOLDERS option:
FOLDERS ’FOLDER("/Tools",DESCEND) OR FOLDER("/Cars")’

This option is invalid when IS_REG_TABLE = ’Y’. This option is
optional.

IS_REG_TABLE
Specifies whether the object specified by the REMOTE_OBJECT option
is a Documentum registered table. The valid values are ’y’, ’Y’, ’n’,
and ’N’. The default value is ’N’. This option is optional.

Note: You cannot change a nickname from a Documentum object to a
registered table (or back) by changing this option with the
ALTER NICKNAME statement. Instead, you must DROP and
re-CREATE the nickname.

REMOTE_OBJECT
Specifies the name of the Documentum object type associated with the
nickname. The name can be any Documentum object type or
registered table. In the case of a registered table, it should be prefixed
by the table owner’s name. If the registered table belongs to the
Docbase owner, dm_dbo can be used for the owner name. This option
is required.

Note: Using ALTER NICKNAME to change the value of the
REMOTE_OBJECT option will result in errors if the structure of
the new object is not similar to that of the original object.

Chapter 4. Documentum as a data source 43

Understanding pseudo columns
The CREATE NICKNAME statement also defines 6 pseudo columns. These
columns are used to access object content and other information

The pseudo-columns and their definitions are listed in Table 8.

Table 8. Pseudo column names and definitions.

Pseudo column name Definition

GET_FILE VARCHAR (255)

GET_FILE_DEL VARCHAR (255)

GET_RENDITION VARCHAR (255)

GET_RENDITION_DEL VARCHAR (255)

HITS INTEGER

SCORE DOUBLE

Table 9 lists pseudo columns for SELECT clauses.

Table 9. Pseudo columns for SELECT clauses

Pseudo column name Description

GET_FILE Retrieves the content file for the current row in addition
to the column values.

The extension for the content file is its Documentum
format name. If a file of the same name exists, it will be
overwritten.

GET_FILE attempts to get the object’s base format. Its
value in the row is the object’s a_content_type. Its value is
the string ″no_content″ if the object has no content file.

For example:

SELECT object_name, DCTM.GET_FILE
FROM ...

The content file is placed in the server directory that is
specified by the Server’s CONTENT_DIR option. It is also
placed in a subdirectory named with the user’s DB2 local
name. The subdirectory will be created if it doesn’t exist.

It’s extension will be its DOS extension defined in the
Docbase for the document’s format type. For example,
″.doc″, for MS Word documents.

Returns the string ″no_content″ or the fully-qualified
name of the file.

44 DB2 LSDC Planning, Installation, and Configuration Guide

Table 9. Pseudo columns for SELECT clauses (continued)

Pseudo column name Description

GET_FILE_DEL This function is the same as GET_FILE except
GET_FILE_DEL first deletes the file retrieved for the
previous row, if any, in that query. Returns the string
″no_content″ or the fully-qualified name of the file.

GET_RENDITION Retrieves the content file of that rendition, a copy of the
original document in a different format, for the current
row in addition to the column values.

The extension for the content file is its Documentum
format name. If a file of the same name exists, it will be
overwritten.

To specify the rendition format, a predicate of the form
DCTM.RENDITION_FORMAT(<format) = 1 must be
specified in the WHERE clause.

For example:

SELECT object_name, get_rendition
FROM ...
WHERE DCTM.RENDITION_FORMAT(’pdf’)=1

GET_RENDITION attempts to get the named rendition of
the object. Its value in the row is the object’s
a_content_type, except that its value is the string
″no_content″ if the object has no content file, or the string
″not_found″ if the rendition does not exist.

The content file is placed in the server directory that is
specified by the Server’s CONTENT_DIR option. It is also
placed in a subdirectory named with the user’s DB2 local
name. The subdirectory will be created if it doesn’t exist.

It’s extension will be its DOS extension defined in the
Docbase for the document’s format type. For example,
″.doc″, for MS Word documents.

Returns the string ″no_content″, ″not found″, or the
fully-qualified name of the file.

GET_RENDITION_DEL This function is the same as GET_RENDITION except
GET_RENDITION_DEL first deletes the file retrieved for
the previous row, if any, in that query. Returns the string
″no_content″, ″not found″, or the fully-qualified name of
the file.

Table 10 on page 46 lists pseudo columns for SELECT clauses in queries that
contain search clauses.

Chapter 4. Documentum as a data source 45

Table 10. Pseudo columns for SELECT clauses in queries that contain search clauses

Pseudo
column
name

Description

HITS Returns an integer number that represents the number of places in the
document in which the search criteria was matched.

For example:

SELECT r_object_id, object_name, hits
FROM std_doc
WHERE DCTM.SEARCH_WORDS (’’’workflow’’ OR ’’flowchart’’’)=1

For each document returned, the number of occurrences of the words
″workflow″ and ″flowchart″ within the document’s content are summed
and returned as the HITS value.

The HITS pseudo column is appropriate when the documents have only
one content file. This is the typical case. This pseudo column can be used
in a WHERE clause qualification for a SELECT statement. However, it
must also be specified in the SELECT clause.

SCORE Returns a document’s relevance ranking.

Use this pseudo column in conjunction with the Documentum’s ACCRUE
concept operator. Both return a number that indicates how many of the
specified words were found in each returned document.

For example:

SELECT object_name, score
FROM std_doc
WHERE
DCTM.SEARCH_TOPIC(’<ACCRUE>("document","management","workflow")’)=1

AND SCORE >=75

The statement returns all documents that have either two or three of the
specified words in their content. If a document has only one of the words,
it is assigned a score of 50 and therefore fails the WHERE clause criteria
and is not returned. If two of the three words are found, a document is
assigned a score of 75. If all three words are found, the document’s score
is 88.

The SCORE pseudo column is used for documents that have one content
file. This is the typical case.

SCORE can be in a SELECT clause only if the WHERE contains a
SEARCH_WORDS() or SEARCH_TOPIC() function. In a WHERE clause, it
is used in conjunction with the ACCRUE concept operator.

For information on the ACCRUE concept operator, see the Documentum
documentation.

46 DB2 LSDC Planning, Installation, and Configuration Guide

CREATE NICKNAME example
The following CREATE NICKNAME statement defines the nickname std_doc.
Std_doc is associated with a Documentum Docbase with an object type of
dm_document. Table 11 maps the Documentum attributes and data types to
DB2 relational column names and data types that are then used to construct
the CREATE NICKNAME statement.

Table 11. Mapping of Documentum attributes to DB2 columns for the std_doc nickname

Documentum
attribute name

Documentum
data type

DB2 column
name

DB2 data
type

Repeats? Nullable?

object_name string(255) object_name varchar No No

r_object_id ID object_id char(16) No No

r_object_type string(32) object_type varchar No No

title string(255) title varchar No No

subject string(128) subject varchar No No

authors string(32) author varchar Yes Yes

keywords string(32) keyword varchar Yes Yes

r_creation_date time creation_date timestamp No Yes

r_modify_date time modified_date timestamp No Yes

a_status string(16) status varchar No No

a_content_type string(32) content_type varchar No No

r_content_size double content_size integer No No

owner_name string(32) owner_name varchar No Yes

Table 12 describes each Documentum attribute used in the nickname.

Table 12. Description of Documentum attributes for the std_doc nickname

Documentum
attribute name

Description

object_name The user-defined name of the object.

r_object_id The unique object identifier for this object, set at creation time.

r_object_type The object’s type, set when the object is created.

title The user-defined title of the object.

subject The user-defined subject of the object.

authors The user-defined list of the authors for the object.

keywords The list of user-defined keywords for the object.

r_creation_date The date and time that the object was created.

Chapter 4. Documentum as a data source 47

Table 12. Description of Documentum attributes for the std_doc nickname (continued)

Documentum
attribute name

Description

r_modify_date The date and time that the object was last modified.

a_status Set by server when a router task is forwarded. The value is taken
from the values assigned to attached_task_status in the router object.

a_content_type The file format of the object’s content.

r_content_size The number of bytes in the content. For multi-page documents, this
attribute records the size of the first content associated with the
document.

owner_name The name of the object’s owner (the user who created the object).

Table 11 on page 47 translates into the following CREATE NICKNAME
statement.
CREATE NICKNAME std_doc (

object_name varchar(255) not null,
object_id char(16) not null OPTIONS(REMOTE_NAME ’r_object_id’),
object_type varchar(32) not null OPTIONS(REMOTE_NAME ’r_object_type’),
title varchar(255) not null,
subject varchar(128) not null,
author varchar(32) OPTIONS(REMOTE_NAME ’authors’, IS_REPEATING ’Y’),
keyword varchar(32) OPTIONS(REMOTE_NAME ’keywords’, IS_REPEATING ’Y’),
creation_date timestamp OPTIONS(REMOTE_NAME ’r_creation_date’),
modifed_date timestamp OPTIONS(REMOTE_NAME ’r_modify_date’),
status varchar(16) not null OPTIONS(REMOTE_NAME ’a_status’),
content_type varchar(32) not null OPTIONS(REMOTE_NAME ’a_content_type’),
content_size integer not null OPTIONS(REMOTE_NAME ’r_content_size’),
owner_name varchar(32))

FOR SERVER Dctm_Server2 OPTIONS (REMOTE_OBJECT ’dm_document’, IS_REG_TABLE ’N’)

After you submit the CREATE NICKNAME statement, you can use the
nickname std_doc to query your federated system. You can also join the
std_doc nickname with other nicknames and tables in the federated system.

Note: In the catalog, the number of columns for this nickname is 6 more than
what is being specified in the CREATE NICKNAME statement due to
the pseudo columns.

You can use the CreateNicknameFile utility to automatically map
Documentum types to DB2 types and to create an initial CREATE
NICKNAME statement. For more information on the CreateNicknameFile
utility, see the Related links section below.

The next task in this sequence of tasks is Registering custom functions for
Documentum data sources.

48 DB2 LSDC Planning, Installation, and Configuration Guide

Related tasks:

v “Registering nicknames for table-structured files” on page 19
v “Mapping users (Documentum wrapper)” on page 40
v “Registering custom functions for Documentum data sources” on page 49
v “Registering nicknames for Excel data sources” on page 73
v “Registering nicknames for BLAST data sources” on page 98
v “Registering nicknames for XML data sources” on page 118
v Chapter 8, “Specifying costing nickname options” on page 133

Registering custom functions for Documentum data sources

This task is part of the main task for Adding Documentum to a federated system.
You must use the CREATE FUNCTION statement to register several custom
functions. You can use these functions to access some of the unique
capabilities of Documentum, such as full-text searching and retrieving
document content within queries.

Custom functions for predicates are listed in Table 13 on page 50.

DB2 does not support a BOOLEAN data type. Therefore, to create valid SQL
statements, the value of each custom function must be explicitly tested. The
wrapper implementation only supports the semantics for
″DCTM.<function>(<args>) = 1″ regardless of the test comparison operator
specified.

Note: References to the TOPIC function are to Documentum function
provided as part of its third-party full-text indexing system from Verity,
Inc.

Procedure:

To register custom functions, use the CREATE FUNCTION statement.

All custom functions must be registered with the schema name DCTM. The
fully-qualified name of each function is DCTM.<function_name>.

The following example registers the ANY_EQ custom function.
CREATE FUNCTION DCTM.ANY_EQ (CHAR(), CHAR()) RETURNS INTEGER
AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

You must register each custom function one time for each DB2 database that
has the Documentum wrapper installed.

Chapter 4. Documentum as a data source 49

To assist you in registering custom functions, the sample file,
create_function_mappings.ddl, is provided in the sqllib/samples/lifesci
directory. This file contains definitions for each custom function. You can run
this ddl file to register the custom functions for each DB2 database that has
the Documentum wrapper installed.

Custom function string argument rules
All arguments passed as strings must adhere to the following rules:
v Each string is enclosed in single quotes.
v Single quotes within strings are expressed by two single quotes.

Using custom functions in queries
The following examples illustrate the use of the custom functions in queries.

To display the object name and author from the std_doc nickname for
documents that have one or more authors named ’Dave Winters’:
SELECT object_name,authors FROM std_doc
WHERE DCTM.ANY_EQ(authors,’Dave Winters’)=1

To display the object name and author from the std_doc nickname for
documents that have one or more authors named ’Dave Winters’ or ’Jon Doe’:
SELECT object_name,authors FROM std_doc
WHERE DCTM.ANY_IN(authors,’Dave Winters’,’Jon Doe’)=1

To display the object name and r_object_id, and to retrieve the content file,
from the std_doc nickname for documents containing strings like ’Dave
Win%’ in the authors column:
SELECT object_name, r_object_id, get_file FROM std_doc
WHERE DCTM.ANY_LIKE(authors,’Dave Win%’)=1

Custom function table
Table 13 lists the custom functions for predicates.

Table 13. Custom functions for predicates

Function name Description

ANY_EQ(arg1, arg2) Tests a repeating attribute for any value equal to the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_EQ(authors,’Dave Winters’)=1

50 DB2 LSDC Planning, Installation, and Configuration Guide

Table 13. Custom functions for predicates (continued)

Function name Description

ANY_NE(arg1, arg2) Tests a repeating attribute for any value not equal to the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_NE(authors,’Dave Winters’)=1

ANY_LT(arg1, arg2) Tests a repeating attribute for any value less than the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_LT(num_approvers,4)=1

ANY_GT(arg1, arg2) Tests a repeating attribute for any value greater than the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_GT(num_approvers,3)=1

ANY_LE(arg1, arg2) Tests a repeating attribute for any value less than or equal
to the specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_LE(num_approvers,2)=1

Chapter 4. Documentum as a data source 51

Table 13. Custom functions for predicates (continued)

Function name Description

ANY_GE(arg1, arg2) Tests a repeating attribute for any value greater than or
equal to the specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the value to be compared.

For example:

... WHERE DCTM.ANY_GE(num_approvers,1)=1

ANY_IN(arg1, arg2 –
arg11)

Tests a repeating attribute for any of ten values in a
specified list of values. Takes 3–11 arguments of the same
data type:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2–arg11
Specifies a comma-separated list of values to be
compared.

For example:

... WHERE DCTM.ANY_IN(authors,’Crick’,’Watson’)=1

ANY_LIKE(arg1, arg2) Tests a repeating attribute for any value like the specified
value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the pattern being compared with
sub-strings in single quotes.

For example:

... WHERE DCTM.ANY_LIKE(authors,’Dave Win%’)=1
OR DCTM.ANY_LIKE(keywords,’%_%’)=1

Note: The escape clause is not supported in ANY_LIKE()
predicates.

52 DB2 LSDC Planning, Installation, and Configuration Guide

Table 13. Custom functions for predicates (continued)

Function name Description

ANY_NOT_LIKE(arg1,
arg2)

Tests a repeating attribute for any value not like the
specified value. Takes two required arguments:

arg1 Specifies the name of a column that represents a
repeating attribute.

arg2 Specifies the pattern being compared with
sub-strings in single quotes.

For example:

... WHERE DCTM.ANY_NOT_LIKE(authors,’Dave Win%’)=1
OR DCTM.ANY_NOT_LIKE(keywords,’%_%’)=1

Note: The escape clause is not supported in
ANY_NOT_LIKE() predicates.

ANY_NULL(arg) Tests a repeating attribute for IS NULL. Takes one required
argument that is the name of the repeating attribute or
single-valued DATE or TIMESTAMP attribute.

For example:

... WHERE DCTM.ANY_NULL(authors)=1

ANY_NOT_NULL(arg) Tests a repeating attribute for IS NOT NULL. Takes one
required argument that is the name of the repeating
attribute.

For example:

... WHERE DCTM.ANY_NOT_NULL(authors)=1

ANY_SAME_INDEX(arg1
– arg10)

Tests repeating attributes for values at the same index of
each attribute. Takes two to ten of the other ANY_xx()
functions.

The following example checks whether a document has at
least one author named Ken who is not affiliated with
UCD.

... WHERE DCTM.ANY_SAME_INDEX(
ANY_EQ(author_name,’Ken’),
DCTM.ANY_NE(author_affiliation,’UCD’))=1

Chapter 4. Documentum as a data source 53

Table 13. Custom functions for predicates (continued)

Function name Description

CABINET(arg) and
CABINET_TREE(arg)

Takes one required argument that is the fully-qualified
name of a Docbase cabinet.

For example:

... WHERE DCTM.CABINET(’/Tools’)=1

... WHERE DCTM.CABINET_TREE(’/MyDocs’)=1

Use multiple instances of CABINET and CABINET_TREE
to specify multiple cabinets.

For example:

... WHERE DCTM.CABINET(’/Tools’)=1
OR DCTM.CABINET_TREE(’/Parts’)=1

FOLDER(arg) and
FOLDER_TREE(arg)

Takes one required argument that is the fully-qualified
name of a Docbase folder or cabinet.

For example:

... DCTM.FOLDER(’/Tools/Drills’)=1

... DCTM.FOLDER_TREE(’/MyDocs/WhitePapers’)=1

Use multiple instances of FOLDER and FOLDER_TREE to
specify multiple folders.

For example:

... DCTM.FOLDER(’/Tools/Drills’)=1
OR DCTM.FOLDER_TREE(’/Animals/Horses’)=1

RENDITION_FORMAT
(format)

Works with the GET_RENDITION and
GET_RENDITION_DEL pseudo columns to establish the
format of the rendition to be retrieved. Takes a single
character string argument specifying the format.

The following example retrieves a document in PDF format:

SELECT get_rendition
FROM
WHERE DCTM.RENDITION_FORMAT(’pdf’)=1

USER(1) Compares a value to the Documentum author ID of the
current user. Takes a dummy argument that must be 1.

For example:

... WHERE approver = DCTM.USER(1)

Note: To make the Documentum author ID correspond to
the DB2 author ID, use the CREATE USER MAPPING
statement. For more information on user mapping, see the
Related Links section below.

54 DB2 LSDC Planning, Installation, and Configuration Guide

Table 13. Custom functions for predicates (continued)

Function name Description

SEARCH_WORDS(arg) Takes one required string argument that is a list of
individual words enclosed in single quotes, separated by
AND, OR, or NOT, and using parentheses to control
precedence. Words cannot contain white space and must be
enclosed in single quotes.

For example:

... DCTM.SEARCH_WORDS(’’’yeast’’
AND (’’bread’’ OR ’’cake’’)
AND NOT ’’wedding’’’)=1

SEARCH_TOPIC(arg) Takes one required string argument which is a Verity
TOPIC query statement that is to be passed to
Documentum and Verity verbatim.

For example:

... WHERE DCTM.SEARCH_TOPIC(’"quick"’)=1

For more information on the CREATE FUNCTION statement, see the DB2
SQL Reference.

There are no further tasks in this sequence of tasks.

Related tasks:

v “Registering nicknames for Documentum data sources” on page 40

Running queries against Documentum data sources

After you register the wrapper, you can run SQL queries against the
Documentum data source. This section provides several example queries.

Procedure:

To run queries, you use the nickname and the defined nickname columns in
your SQL statements in the same manner as you would use a regular table
name and table columns.

The following query displays all of the Docbase documents for documents
named ’Test Document’:
SELECT object_name
FROM std_doc
WHERE object_name=’Test Document’;

Chapter 4. Documentum as a data source 55

The following query uses the custom function ANY_EQ to display all the
documents where one of the authors is ’Joe Doe’.
SELECT object_name
FROM std_doc
WHERE DCTM.ANY_EQ(author,’Joe Doe’)=1

The following query uses the FOLDER_TREE function and the
SEARCH_WORDS function to find all documents in the Approved cabinet
that contain the text ″protein″.
SELECT object_name
FROM std_doc
WHERE DCTM.FOLDER_TREE(’/Approved’)=1

AND DCTM.SEARCH_WORDS(’protein’)=1

The following query uses the GET_FILE pseudo column and the
FOLDER_TREE and ANY_IN custom functions to retrieve the name of the
files, on the DB2 server, into which the content has been placed for all
documents in the Approved cabinet that have any of the authors listed.
SELECT object_name, object_id, get_file
FROM std_doc
WHERE DCTM.FOLDER_TREE(’/Approved’)=1

AND DCTM.ANY_IN(author, ’Mary Black’, ’Joe Carson’, ’Peter Miller’)=1

Related tasks:

v “Running queries against Excel data sources” on page 74
v “Running queries against XML data sources” on page 125

What is the CreateNicknameFile utility for the Documentum wrapper?

You can use a Docbasic utility named CreateNicknameFile, available for free
download, to create an ASCII file that contains a complete definition of any
Docbase object or registered table. You can edit the output file to:
v Define custom local names for columns and attributes. The local and remote

names are initially the names as they are known in the Docbase.
v Delete unwanted columns and attributes. The only predefined

Documentum document type (dm_document) has 59 attributes in EDMS98
and 76 attributes in 4i. Most of these contain metadata for low-level
document management and application development. Deleting the
attributes that are not of interest can make SELECT * SQL statements more
useful without impacting performance.

v Add a value for the FOLDERS option to restrict searches against this
nickname to particular Documentum folders.

v Change DATE mappings to TIMESTAMP if that is desired. The utility
generates a mapping from DQL DATE to DB2® DATE because that seems
the most useful.

56 DB2 LSDC Planning, Installation, and Configuration Guide

v Change CHAR mappings to VARCHAR or vice-versa depending on
application insight.

You must install the utility in a Docbase and run it from a Documentum
Windows® graphical user interface. The files that the utility generates are
specific to the Docbase in which it is installed.

Related tasks:

v “Installing the CreateNicknameFile utility (Documentum wrapper)” on page
57

v “Configuring the CreateNicknameFile utility (Documentum wrapper)” on
page 58

v “Mapping the DM_ID object type in Documentum registered tables” on
page 59

Installing the CreateNicknameFile utility (Documentum wrapper)

The CreateNicknameFile utility can assist you in writing CREATE
NICKNAME statements for your Documentum data sources.

Procedure:

To install the utility:
1. Download the CreateNicknameFile utility from the download section of

the DB2 Life Sciences Data Connect product website at:
http://www.ibm.com/software/data/db2/lifesciencesdataconnect/

2. Use the EDMS98 Workspace graphical user interface or the 4i Desktop
Client to import the utility, named CreateNicknameFile.txt. You can import
the utility as a procedure type into any Docbase cabinet or folder, and you
can give it any name you want.

3. Check the Can be run by user box on the properties dialog for the newly
imported CreateNicknameFile.txt object.

Related concepts:

v “What is the CreateNicknameFile utility for the Documentum wrapper?” on
page 56

Related tasks:

v “Configuring the CreateNicknameFile utility (Documentum wrapper)” on
page 58

v “Mapping the DM_ID object type in Documentum registered tables” on
page 59

Chapter 4. Documentum as a data source 57

Configuring the CreateNicknameFile utility (Documentum wrapper)

The CreateNicknameFile utility can assist you in writing CREATE
NICKNAME statements for your Documentum data sources.

Prerequisites:

You must install the CreateNicknameFile utility before it can be configured.
For more information on installing the CreateNicknameFile utility, see
″Installing the CreateNicknameFile utility (Documentum wrapper)″ in the
Related tasks section below.

Procedure:

To configure the utility after you install it:
1. Double-click on the utility’s icon to run it.
2. Type the Documentum Document/object-type name. The default is

dm_document.

Note: Specify dm_registered as the name if you need to create a nickname
file for a registered table. If you specify dm_registered, you will also
be prompted for the fully-qualified table name in
<owner>.<table_name> format. You can use dm_dbo for the owner
name if the table is owned by the Docbase owner (the typical case).

The utility assumes a naming convention for the names of
nicknames for registered tables. The convention is to prefix the table
name with ″rt_″ to indicate ″registered table″. You can change the
nickname proposed by the utility if you don’t want to use this
convention.

3. Type the server name associated with the nickname you are creating.
4. Type the name of the nickname.

The names of nickname should be self-explanatory and must be unique
within the DB2 instance. The utility assumes a naming convention of
<server_name>.<object_type> because the same <object_type> might need
to be defined to multiple servers. You can change the nickname proposed
by the utility if you don’t want to follow this convention.

5. Type the name of the output file.
The default is C:\Temp\nickname.txt. The directory to receive the output
file must already exist and be writeable by the user running the utility.

After you answer the prompts, the nickname file is created and opens in a
text editor.

58 DB2 LSDC Planning, Installation, and Configuration Guide

Related concepts:

v “What is the CreateNicknameFile utility for the Documentum wrapper?” on
page 56

Related tasks:

v “Registering nicknames for Documentum data sources” on page 40
v “Installing the CreateNicknameFile utility (Documentum wrapper)” on page

57

Mapping the DM_ID object type in Documentum registered tables

The column definitions created by the CreateNicknameFile utility are
compliant with the requirements of the Documentum wrapper, including the
correct mapping of each data type to the corresponding DB2 data type. The
only exception is that Documentum does not support the DM_ID data type in
registered tables. The utility assumes that a column in a registered table is
used to contain an object ID if it is defined as a string, is 16 characters long,
and has a name ending with ″_id″. In the case of the DM_ID data type, the
utility maps the column to the DB2 CHAR(16) data type. In all other cases, all
string/varchar columns are mapped to the DB2 VARCHAR data type.

Procedure:

To ensure proper data type mapping:
1. Examine the column data type definitions in the output file created by the

CreateNicknameFile utility.
2. If the utility mapped a data type of a Documentum column to an incorrect

DB2 data type, change the DB2 data type before using the file to register
the nickname to DB2.

Related concepts:

v “What is the CreateNicknameFile utility for the Documentum wrapper?” on
page 56

Related tasks:

v “Installing the CreateNicknameFile utility (Documentum wrapper)” on page
57

v “Configuring the CreateNicknameFile utility (Documentum wrapper)” on
page 58

Chapter 4. Documentum as a data source 59

Dual defining repeating attributes (Documentum wrapper)

To maximize the query capabilities of the wrapper, each attribute must be
defined as its true equivalent DB2 data type. That is, Documentum integers
must be defined as DB2 integers and so forth. However, these definitions
prevent the return of multiple values for non-VARCHAR repeating attributes.
For such columns, only the value at index[0] is returned.

This restriction exists because, whenever possible, the wrapper returns only
one row of results per Docbase object. This restriction is an issue only when
repeating attributes are selected. However, you can define a second column
for the same remote repeating attribute but with a data type of VARCHAR.

This column name would be used in the SELECT list to return all values as a
delimiter-separated list of all its values. (Each column’s DELIMITER option
specifies the delimiter to be used.)

You should standardize the local names of the multi-value columns. You can
standardize the local names of each multi-value column by adding a prefix of
″m_″ to the local name of the column that is defined as its true data type.

For example, suppose you have a nickname column of a Documentum
repeating attribute called approval_dates defined with the data type
TIMESTAMP. You can create a second nickname column called
m_approval_dates and define it as a VARCHAR data type. You can then use
m_approval_dates in a SELECT list to return all approval dates in a
delimiter-separated list.

You do not need to use dual definitions for repeating attributes whose true
data type is VARCHAR.

Limitations and considerations for the Documentum wrapper

This section contains a list of limitations and considerations associated with
the use of the Documentum wrapper.
v Limitations concerning returning repeating attributes values: Only the last

value is returned for
– non-VARCHAR repeating attributes
– VARCHAR columns when ALL_VALUES ’N’ is specified

To overcome this limitation, you can create a dual definition for the
repeating attribute column. For more information on creating dual
definitions for repeating attributes, see the Related Links Section below.

60 DB2 LSDC Planning, Installation, and Configuration Guide

Also, multiple values of repeating attributes defined as VARCHAR are
returned as one delimiter—separated string. The delimiter depends on the
setting of the DELIMITER nickname option set in the CREATE NICKNAME
statement.

v The Passthru capability is not supported.
v For each connection to a DB2 database made by a DB2 application, the

Documentum wrapper can support a maximum of 10 simultaneous
Documentum sessions, and each such session can simultaneously manage
up to 10 Documentum queries. A single DB2 application can have several
queries in progrss simultaneously; the lifetime of a query begins when it is
submitted to DB2 and ends when the corresponding cursor over the result
set is closed. At any given time, across the entire set of queries in progress
at that time, the following restrictions must hold:
– All the nicknames referenced by all the queries must reside at no more

than 10 different Documentum servers.
– No more than 10 nicknames from one Documentum server may be

referenced.

Nicknames mentioned in more than one query, or referenced multiple times
in a single query, must be counted once for each time they appear.

v The Documentum wrapper uses Version 3.1.7a for AIX of the client library.
If you are using Documentum 4i , you will need to acquire the older
version of the client library from Documentum (if it is not already
installed).

v Because DB2 does not support the Boolean type, most of the custom
functions (except for USER) used in the WHERE clause must do a check for
″=1″ because these functions are defined to return an integer.
For example,
"... WHERE DCTM.ANY_EQ(authors,’Dave Winters’)=1"

v Due to a limitation of DB2, the custom function USER is defined with an
integer argument that is not used.

v All servers running against the same instance of DB2 must share the same
Documentum dmcl.ini configuration parameters.

v The maximum number of values in an ANY_IN custom function for
repeating attributes is 10 for a single statement. However, multiple
statements can be OR’d.

v For the ANY_SAME_INDEX custom function the maximum number of tests
for values at the same index of repeating attributes is 10. The tests must be
AND tests that are evaluated left to right.

v The wrapper has no capabilities that are specific to a particular code page.

Related reference:

Chapter 4. Documentum as a data source 61

v “Wrapper limitations and considerations for the table-structured file
wrapper” on page 23

v “File limitations and considerations for the table-structured file wrapper”
on page 24

v “Wrapper limitations for the Excel wrapper” on page 77
v “Excel file limitations” on page 78
v “Limitations and considerations for the XML wrapper” on page 126

Access control for the Documentum wrapper

Queries are subject to the user’s permissions in the Docbase. Only those
documents to which the user has at least read access are included in query
results.

Related reference:

v “File access control model for the table-structured file wrapper” on page 25
v “File access control model for the Excel wrapper” on page 78

Messages for the Documentum wrapper

This section lists and describes messages you might encounter while working
with the wrapper for Documentum. For more information on messages, see
the DB2 Message Reference.

Table 14. Messages issued by the wrapper for Documentum

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason
″sqlno_crule_save_plans
[100]:rc (-2144272209) Empty
plan list detect″.)

The SQL query submitted to DB2 could
not be processed by the wrapper. Correct
the syntax and resubmit.

62 DB2 LSDC Planning, Installation, and Configuration Guide

Table 14. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″dmAPI exec failed:
[DM_QUERY_E_BAD_QUAL]
error: ″The attribute qualifier,
A0, for attribute
<column_name>, is not a
valid qualifier.″″.)

An incorrect Documentum type or
registered table was entered for the
REMOTE_OBJECT nickname option.
Change the nickname to use the correct
Documentum object type or registered
table.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Invalid null column
specified″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Nickname
specification is empty″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″The Output object is
empty or incomplete″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Unexpected number
of columns requested″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″No column
information found″.)

Internal programming error. Contact IBM
Software Support.

Chapter 4. Documentum as a data source 63

Table 14. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Unsupported
column type requested″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Incorrect Column
definition″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Inconsistent type;
DB2 request != nickname
type″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Output parameter is
not NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Query output
variable is not NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Invalid timestamp
length″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Inconsistent number
of columns″.)

Internal programming error. Contact IBM
Software Support.

64 DB2 LSDC Planning, Installation, and Configuration Guide

Table 14. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Could not access
data when converting
values″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Failed to initialize
the DMCL client″.)

The Documentum client cannot initialize.
Contact your system administrator.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Get_User returned
NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Get_Local_User
returned NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Begin Transaction
failed″.)

Documentum reported that begintrans
failed. Contact your system
administrator.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Input parameter
was not NULL″.)

Internal programming error. Contact IBM
Software Support.

SQL901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Dctm functions
must be like
DCTM.function(...) =1″.)

The user did not use =1 as the RHS of
the predicate for a Dctm function.
Correct the syntax and run the query
again.

Chapter 4. Documentum as a data source 65

Table 14. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Invalid column
number requested″.)

Internal programming error. Contact IBM
Software Support.

SQL1881N ″DELIMITER″ is not a valid
″COLUMN″ option for
″<column-name>″

The DELIMITER option was specified for
column <column-name>, but the
IS_REPEATING option was not specified.

SQL1882N The ″SERVER″ option
″RDBMS_TYPE″ cannot be set
to ″<option-value>″ for
″<server-name>″.

The value specified for the RDBMS_TYPE
server option is invalid. It must be one of
the following: DB2, INFORMIX,
ORACLE, SQLSERVER or SYBASE.

SQL1882N The ″SERVER″ option
″TRANSACTIONS″ cannot be
set to ″<option-value>″ for
″<server-name>″.

The value specified for the
TRANSACTIONS server option is
invalid. It must be one of the following:
NONE, QUERY, PASSTHRU or ALL.

SQL1882N The ″NICKNAME″ option
″IS_REG_TABLE″ cannot be
set to ″<option-value>″ for
″<nickname>″.

The value specified for the
IS_REG_TABLE nickname option is
invalid. It must be one of the following:
’Y’ or ’N’.

SQL1882N The ″NICKNAME″ option
″ALL_VERSIONS″ cannot be
set to ″<option-value>″ for
″<nickname>″.

The value specified for the
ALL_VERSIONS nickname option is
invalid. It must be one of the following:
’Y’ or ’N’.

SQL1882N The ″SERVER″ option
″OS_TYPE″ cannot be set to
″<option-value>″ for
″<server-name>″

The value specified for the OS_TYPE
server option is invalid. It must be: AIX,
HPUX, SOLARIS or WINDOWS.

SQL1882N The ″NICKNAME″ option
″FOLDERS″ cannot be set to
″<option-value>″ for
″<nickname>″

The value specified for the FOLDERS
nickname option is invalid. It cannot be
specified for a table where
IS_REG_TABLE is ’Y’.

SQL1882N The ″NICKNAME″ option
″VERSIONS″ cannot be set to
″<option-value>″ for
″<nickname>″

The value specified for the VERSIONS
nickname option is invalid. It must be
one of the following: ’Y’ or ’N’.
Moreover, VERSIONS ’Y’ cannot be
specified for a table where
IS_REG_TABLE is ’Y’.

66 DB2 LSDC Planning, Installation, and Configuration Guide

Table 14. Messages issued by the wrapper for Documentum (continued)

Error Code Message Explanation

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Invalid column name,
IS_REG_TABLE, or
IS_REPEATING specified in
nickname″

Check the nickname statement for the
correct specification of the
IS_REG_TABLE, IS_REPEATING,
REMOTE_NAME options, and column
names.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″db2dj.ini missing
DOCUMENTUM or
DMCL_CONFIG env var″

The required environment variables are
not set. Set them in the db2dj.ini file.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Failed to open log file for
debugging″

The log file used for troubleshooting is
not accessible. Contact your system
administrator.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Only one search condition
may be specified″

Only one custom search function may be
specified per query.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Failed to create content
directory″

Make sure the destination directory is
writable by the DB2 agent.

SQL30090N Operation invalid for
application execution
environment. Reason code =
″Failed to change permissions
on content file″

Make sure the target content directory is
writable by the db2 agent.

Related reference:

v “Messages for the table-structured file wrapper” on page 25
v “Messages for the Excel wrapper” on page 78
v “Messages for the BLAST wrapper” on page 109
v “Messages for the XML wrapper” on page 127

Chapter 4. Documentum as a data source 67

68 DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 5. Excel as a data source

This chapter explains what Excel is, how to add Excel data sources to your
federated system, and lists the error messages associated with the Excel
wrapper.

What is Excel?

An Excel spreadsheet or workbook is a file created using the Microsoft® (MS)
Excel application and has a file extension of xls. DB2 Life Sciences Data
Connect supports spreadsheets from Excel 97 and Excel 2000. Figure 6
illustrates how the Excel wrapper connects your spreadsheets to your
federated system.

The Excel wrapper uses the CREATE NICKNAME statement to map the
columns in your Excel spreadsheet to columns in your DB2® federated
system. Table 15 shows sample spreadsheet data that is stored in a file called
Compound_Master.xls.

Table 15. Sample spreadsheet for Compound_Master.xls

A B C D

1 compound_A 1.23 367 tested

2 compound_G 210

Figure 6. How the Excel wrapper works

© Copyright IBM Corp. 2001, 2002 69

Table 15. Sample spreadsheet for Compound_Master.xls (continued)

A B C D

3 compound_F 0.000425536 174 tested

4 compound_Y 1.00256 tested

5 compound_Q 1024

6 compound_B 33.5362

7 compound_S 0.96723 67 tested

8

9 compound_O 1.2 tested

This information is usually not available to you through standard SQL
commands. When the Excel wrapper is installed and registered, you can
access this information as if it were a standard relational data source. For
example, if you wanted to know all the compound data where the molecular
count is greater than 100, you would run the following SQL query:
SELECT * FROM compound_master WHERE mol_count > 100

The results of the query are shown in Table 16.

Table 16. Query results

COMPOUND_NAME WEIGHT MOL_COUNT WAS_TESTED

compound_A 1.23 367 tested

compound_G 210

compound_F 0.000425536 174 tested

compound_Q 1024

Related concepts:

v “What are table-structured files?” on page 13
v “What is Documentum?” on page 31
v “What is BLAST?” on page 85
v “What is XML?” on page 111

Related tasks:

v “Adding Excel to a federated system” on page 71

Related reference:

v “Prerequisite for the Excel wrapper” on page 71

70 DB2 LSDC Planning, Installation, and Configuration Guide

Prerequisite for the Excel wrapper

The prerequisite for utilizing the Excel data source wrapper is:
v The MS Excel application must be installed on the server where DB2 Life

Sciences Data Connect is installed before an Excel wrapper can be utilized.

Related tasks:

v “Adding Excel to a federated system” on page 71
v “Registering the Excel wrapper” on page 71

Adding Excel to a federated system

Procedure:

To add the Excel data source to a federated system:
1. Register the wrapper using the CREATE WRAPPER statement.
2. Register the server using the CREATE SERVER statement.
3. Register nicknames using the CREATE NICKNAME statement for each

Excel spreadsheet you want to access.

The commands can be run from the DB2 Command Line Processor.

Related tasks:

v “Registering the Excel wrapper” on page 71
v “Registering the server for an Excel data source” on page 72
v “Registering nicknames for Excel data sources” on page 73
v “Adding table-structured files to a federated system” on page 16
v “Adding Documentum to a federated system” on page 33
v “Adding BLAST to a federated system” on page 90
v “Adding XML to a federated system” on page 115

Registering the Excel wrapper

This task is part of the main task for Adding Excel to a federated system. You
must register the wrapper in order to access a data source. Wrappers are
mechanisms that federated servers use to communicate with and retrieve data
from data sources. Wrappers are installed on your system as library files.

Procedure:

To register the Excel data source wrapper, submit a CREATE WRAPPER
statement.

Chapter 5. Excel as a data source 71

To create an Excel wrapper for Excel 97 called Excel_9x_Wrapper using the
library file db2lsxls.dll, submit the following statement:
CREATE WRAPPER Excel_9x_Wrapper LIBRARY ’db2lsxls.dll’

OPTIONS(DB2_FENCED ’N’);

For more information on the CREATE WRAPPER statement, see the DB2 SQL
Reference.

The next task in this sequence of tasks is Registering the server for an Excel data
source.

Related tasks:

v “Registering the server for an Excel data source” on page 72

Related reference:

v “Prerequisite for the Excel wrapper” on page 71

Registering the server for an Excel data source

This task is part of the main task for Adding Excel to a federated system. After
the wrapper is registered, you must register a corresponding server.

Procedure:

To register the Excel server to the federated system, use the CREATE SERVER
statement.

For example, to create a server called biochem_lab, with a node name of
biochem_node1 that registers the server for the Excel_2000_Wrapper wrapper
created using the CREATE WRAPPER statement, submit the following
statement:
CREATE SERVER biochem_lab WRAPPER Excel_2000_Wrapper;

Argument definitions

WRAPPER
Specifies the name of the wrapper that you registered in the
associated CREATE WRAPPER statement. This argument is required.

For more information on the CREATE SERVER statement, see the DB2 SQL
Reference.

The next task in this sequence of tasks is Registering nicknames for Excel data
sources.

72 DB2 LSDC Planning, Installation, and Configuration Guide

Related tasks:

v “Registering the server for table-structured files” on page 18
v “Registering the server for Documentum data sources” on page 38
v “Registering the Excel wrapper” on page 71
v “Registering nicknames for Excel data sources” on page 73
v “Registering the server for a BLAST data source” on page 97
v “Registering the server for an XML data source” on page 117

Registering nicknames for Excel data sources

This task is part of the main task for Adding Excel to a federated system. After
you register a server, you must register a corresponding nickname. Nicknames
are used when you refer to an Excel data source in a query.

Procedure:

To map the Excel data source to relational tables, create a nickname using the
CREATE NICKNAME statement.

CREATE NICKNAME syntax (for Excel)

�� CREATE NICKNAME nickname (�

,

column-name data-type column-option �

�) FOR SERVER server-name OPTIONS (FILE_PATH ’path’) �

data-type:

INTEGER
INT

FLOAT
(integer)

VARCHAR (integer)
DATE

column-option:

NOT NULL

For more information on the CREATE NICKNAME statement, see the DB2
SQL Reference.

Chapter 5. Excel as a data source 73

FOR SERVER
Identifies the server that you registered in the associated CREATE
SERVER statement. This server is used to access the Excel spreadsheet.
Specify the server name.

Option definitions

FILE_PATH
Specifies the fully qualified directory path and file name of the Excel
spreadsheet that you want to access.

The statement in the following example creates the Compounds nickname
from the Excel spreadsheet file named CompoundMaster.xls. The file contains
three columns of data that are being defined to the federated system as
Compound_ID, CompoundName, and MolWeight.
CREATE NICKNAME Compounds (
Compound_ID INTEGER,
CompoundName VARCHAR(50),
MolWeight FLOAT)
FOR SERVER biochem_lab
OPTIONS(FILE_PATH ’C:\My Documents\CompoundMaster.xls’);

There are no further tasks in this sequence of tasks.

Related tasks:

v “Registering nicknames for table-structured files” on page 19
v “Registering nicknames for Documentum data sources” on page 40
v “Registering the server for an Excel data source” on page 72
v “Registering nicknames for BLAST data sources” on page 98
v “Registering nicknames for XML data sources” on page 118
v Chapter 8, “Specifying costing nickname options” on page 133

Running queries against Excel data sources

This section lists several sample Excel spreadsheet queries using the example
nickname Compounds.

Procedure:

To run queries, you use the nickname and the defined nickname columns in
your SQL statements in the same manner as you would use a regular table
name and table columns.

The following query displays all compound_ID’s where the molecular weight is
greater than 2000:

74 DB2 LSDC Planning, Installation, and Configuration Guide

SELECT compound_ID
FROM Compounds
WHERE MolWeight > 200;

The following query displays all records where the compound name or
molecular weight is null:
SELECT *
FROM Compounds
WHERE CompoundName IS NULL
OR MolWeight IS NULL;

The following query displays all records where the compound name contains
the string ase and the molecular weight is greater than or equal to 300:
SELECT *
FROM Compounds
WHERE CompoundName LIKE ’%ase%
AND MolWeight >=300;

Related tasks:

v “Running queries against Documentum data sources” on page 55
v “Sample Excel wrapper scenario” on page 75
v “Running queries against XML data sources” on page 125

Sample Excel wrapper scenario

This section demonstrates a sample implementation of the Excel_2000
wrapper accessing an Excel 2000 spreadsheet located in the C:\Data directory.
The scenario registers the wrapper, registers a server and registers one
nickname, that will be used to access the spreadsheet. The statements shown
in the scenario are entered using the DB2 Command Line Processor. After the
wrapper is registered, you can run queries against the spreadsheet.

The scenario starts with a compound spreadsheet, called Compund_Master.xls,
with 4 columns and 9 rows. The fully-qualified path name to the file is
C:\Data\Compound_Master.xls. The contents are show in Table 17.

Table 17. Sample spreadsheet Compound_Master.xls

A B C D

1 compound_A 1.23 367 tested

2 compound_G 210

3 compound_F 0.000425536 174 tested

4 compound_Y 1.00256 tested

5 compound_Q 1024

Chapter 5. Excel as a data source 75

Table 17. Sample spreadsheet Compound_Master.xls (continued)

A B C D

6 compound_B 33.5362

7 compound_S 0.96723 67 tested

8

9 compound_O 1.2 tested

Procedure:

To access an Excel 2000 spreadsheet using the Excel wrapper:
1. Register the Excel_2000 wrapper:

db2 => CREATE WRAPPER Excel_2000 LIBRARY ’db2lsxls.dll’
OPTIONS(DB2_FENCED ’N’)

2. Register the server:
db2 => CREATE SERVER biochem_lab WRAPPER Excel_2000

3. Register a nickname that refers to the Excel spreadsheet:
db2 => CREATE NICKNAME Compound_Master (compound_name VARCHAR(40),
weight FLOAT, mol_count INTEGER, was_tested VARCHAR(20))
FOR biochem_lab
OPTIONS (FILE_PATH ’C:\Data\Compound_Master.xls’)

The registration process is complete. The Excel data source is now part of the
federated system, and can be used in SQL queries.

The following examples show sample SQL queries and results obtained using
the Excel data source.
v Sample SQL query: ″Give me all the compound data where mol_count is

greater than 100″
SELECT * FROM compound_master WHERE mol_count > 100

Result: All fields for rows 1, 2, 3, 5, and 7.
v Sample SQL query: ″Give me the compound_name and mol_count for all

compounds where the mol_count has not yet been determined.
SELECT compound_name, mol_count FROM compound_master
WHERE mol_count IS NULL

Result: Fields compound_name & mol_count of rows 4, 6 and 9 from the
spreadsheet.

v Sample SQL query: ″Count the number of compounds that have not been
tested and the weight is greater than 1.″
SELECT count(*) FROM compound_master
WHERE was_tested IS NULL AND weight > 1

76 DB2 LSDC Planning, Installation, and Configuration Guide

Result: The record count of 1 which represents the single row 6 from the
spreadsheet that meets the criteria.

v Sample SQL query: ″Give me the compound_name and mol_count for all
compounds where the mol_count has been determined and is less than the
average mol_count.″
SELECT compound_name, mol_count
FROM compound_master
WHERE mol_count IS NOT NULL
AND mol_count < (SELECT AVG(mol_count) FROM compound_master

WHERE mol_count IS NOT NULL AND was_tested IS NOT NULL)

The sub-query returns the average 368 to the main query which then
returns Table 18:

Table 18. Query results

COMPOUND_NAME MOL_COUNT

compound_A 367

compound_G 210

compound_F 174

compound_S 67

Related tasks:

v “Adding Excel to a federated system” on page 71
v “Running queries against Excel data sources” on page 74

Wrapper limitations for the Excel wrapper

v The Excel wrappers are only available for Microsoft Windows operating
systems that support DB2 Universal Database Enterprise Server Edition.

v Passthru sessions are not allowed with the Excel wrappers.
v Excel spreadsheet data can only be read not written.
v The wrapper supported date range of the DATE data type is January 1,

1970 to January 18, 2038.

Related reference:

v “Wrapper limitations and considerations for the table-structured file
wrapper” on page 23

v “File limitations and considerations for the table-structured file wrapper”
on page 24

v “Limitations and considerations for the Documentum wrapper” on page 60
v “Excel file limitations” on page 78
v “Limitations and considerations for the XML wrapper” on page 126

Chapter 5. Excel as a data source 77

Excel file limitations

v Data types must be consistent within each column and the column data
types must be described correctly during the register nickname process.

v The Excel wrappers can only access the primary spreadsheet within an
Excel workbook.

v Blank cells in the spreadsheet are interpreted as NULL.
v Up to 10 consecutive blank rows can exist in the spreadsheet and be

included in the data set. More than 10 consecutive blank rows are
interpreted as the end of the data set.

v Blank columns can exist in the spreadsheet. However, these columns must
be registered and described as valid fields even if they will not be used.

Related reference:

v “Wrapper limitations for the Excel wrapper” on page 77

File access control model for the Excel wrapper

The database management system accesses Excel files with the authority of
the LOG ON AS property of the DB2 database service. This setting can be
viewed in the LOG ON properties page for the DB2 instance. The properties
page is accessed through the Windows NT Services control panel.

Related reference:

v “File access control model for the table-structured file wrapper” on page 25
v “Access control for the Documentum wrapper” on page 62

Messages for the Excel wrapper

This section lists and describes messages you might encounter while working
with the wrapper for Excel. For more information on messages, see the DB2
Message Reference.

Table 19. Messages issued by the wrapper for Excel

Error Code Message Explanation

SQL1817N The CREATE SERVER statement
does not identify the ″VERSION″
of data source that you want
defined to the federated
database.

The VERSION parameter was not
specified during the CREATE
SERVER statement. Correct the SQL
statement and run it again.

78 DB2 LSDC Planning, Installation, and Configuration Guide

Table 19. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1000.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Memory allocation
error″

Contact IBM Software Support.

SQL1822N Unexpected error code
″-1001.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Unknown option″.

The option specified in the DDL
statement is not supported. Correct
the SQL statement and run it again.

SQL1822N Unexpected error code
″-1002.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Creation of DELTA
object failed″.

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1100.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Wrapper options are
not supported″

Wrapper OPTIONS are not supported
by this wrapper. Correct the SQL
statement and run it again.

SQL1822N Unexpected error code
″-1200.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″<option> is an
unsupported Server option″.

The specified option is not supported
by this wrapper. Correct the SQL
statement and run it again.

SQL1822N Unexpected error code
″-1201.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error obtaining
server name″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code ″-1209.
<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″ Error converting
VARCHAR data″

An internal program error has
occurred. Contact IBM Software
Support.

Chapter 5. Excel as a data source 79

Table 19. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1211.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″ Error converting
INTEGER data″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1212.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″ Error converting
FLOAT data″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1400.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″<option> is an
unsupported User option″

The specified option is not supported
by this wrapper. Correct the SQL
statement and run it again.

SQL1822N Unexpected error code
″-1401.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Creation of USER
Delta object failed″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1500.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″<option> is an
unsupported Nickname option″

The specified option is not supported
by this wrapper. Correct the SQL
statement and run it again.

SQL1822N Unexpected error code
″-1501.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Required option
PATH not specified″

The PATH option is required to
register the NICKNAME. Correct the
SQL statement and run it again.

SQL1822N Unexpected error code
″-1502.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Creation of
NICKNAME Delta object failed″

An internal program error has
occurred. Contact IBM Software
Support.

80 DB2 LSDC Planning, Installation, and Configuration Guide

Table 19. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1503.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error obtaining
Nickname column type″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1504.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error obtaining
Nickname column type name″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1505.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″received from data
source ″Excel Wrapper″.

The specified <data type> is not
supported by this wrapper. Correct
the SQL statement and run it again.

SQL1822N Unexpected error code
″-1506.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error obtaining
Nickname column info″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1507.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″<option> option
cannot be dropped″

The specified option cannot be
dropped because it is a required
option.

SQL1822N Unexpected error code
″-1508.VANI″ received from data
source ″Excel Wrapper″.
Associated text and tokens are
″Column names cannot be
altered″

The altering of column names is not
permitted by the Excel wrapper.

SQL1822N Unexpected error code
″-1701.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error parsing SQL″

An internal program error has
occurred. Contact IBM Software
Support.

Chapter 5. Excel as a data source 81

Table 19. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1702.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error accessing
NICKNAME object″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1703.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error building data
storage area″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1704.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error linking SQL to
Nickname Data″

An internal program error has
occurred. Contact IBM Software
Support.

SQL1822N Unexpected error code
″-1705.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Excel application
startup failed″

The startup of the Excel application
failed. Confirm that Excel is installed
on the system and has been
registered with the correct version of
the wrapper. Check the LOG ON AS
property for the DB2 instance in the
Windows NT Services control panel.
The Excel application will be
accessed using this authority.
Confirm that this user has
appropriate rights or change this
property to an authorized account,
then restart DB2 and run the SQL
query again.

SQL1822N Unexpected error code
″-1706.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error opening source
spreadsheet″

A problem occurred while opening
the spreadsheet referenced by the
nickname in the SQL query. Ensure
that the file exists in the PATH
specified during the CREATE
NICKNAME statement during
registration.

82 DB2 LSDC Planning, Installation, and Configuration Guide

Table 19. Messages issued by the wrapper for Excel (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″-1707.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error accessing DL
output storage area″

An internal program error occurred.
Contact IBM Software Support.

SQL1822N Unexpected error code
″-1708.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Excel application end
failed″

An internal program error occurred.
If this error persists after repeated
queries, contact IBM Software
Support.

SQL1822N Unexpected error code
″-1711.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Error during fetch,
possible data/col type mismatch″

The data fetched during the SQL
query was of a different data type
than the data type specified during
the registration of the nickname.
Correct the data in the source
spreadsheet or correct the registered
data type in the nickname. If this
does not correct the problem, contact
IBM Software Support.

SQL1822N Unexpected error code
″-1900.<internal program code>″
received from data source ″Excel
Wrapper″. Associated text and
tokens are ″Memory allocation
error″

An internal program error has
occurred. Contact IBM Software
Support.

Related reference:

v “Messages for the table-structured file wrapper” on page 25
v “Messages for the Documentum wrapper” on page 62
v “Messages for the BLAST wrapper” on page 109
v “Messages for the XML wrapper” on page 127

Chapter 5. Excel as a data source 83

84 DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 6. BLAST as a data source

This chapter explains what BLAST is, how to add BLAST data sources to your
federated system, and lists the error messages associated with the BLAST
wrapper.

What is BLAST?

BLAST (Basic Local Alignment Search Tool) is a utility that is maintained by
the National Center for Biotechnology Information (NCBI). BLAST is used to
scan a nucleotide or amino acid sequence database for ″hits.″ A BLAST hit
contains one or more high-scoring segment pairs (HSPs). A HSP is a pair of
sequence fragments, whose alignment is locally maximal, and whose
similarity score exceeds some threshold value. NCBI provides an executable,
blastall, that is used to perform BLAST searches on BLAST-able data sources,
such as GenBank and SWISS-PROT.

The BLAST wrapper supports all five types of BLAST searches: BLASTn,
BLASTp, BLASTx, tBLASTn, and tBLASTx. These are described in Table 20.

Table 20. BLAST search types supported by the BLAST wrapper

BLAST search type Description

BLASTn A type of BLAST search in which a nucleotide sequence
is compared with the contents of a nucleotide sequence
database to find sequences with regions homologous to
regions of the original sequence.

BLASTp A type of BLAST search in which an amino acid
sequence is compared with the contents of an amino
acid sequence database to find sequences with regions
homologous to regions of the original sequence.

BLASTx A type of BLAST search in which a nucleotide sequence
is compared with the contents of an amino acid
sequence database to find sequences with regions
homologous to regions of the original sequence. The
query sequence is translated in all six reading frames,
and each of the resulting sequences is used to search the
sequence database.

© Copyright IBM Corp. 2001, 2002 85

Table 20. BLAST search types supported by the BLAST wrapper (continued)

BLAST search type Description

tBLASTn A type of BLAST search in which an amino acid
sequence is compared with the contents of a nucleotide
sequence database to find sequences with regions
homologous to regions of the original sequence. The
sequences in the sequence database are translated in all
six reading frames, and the resulting sequences are
searched for regions homologous to regions of the query
sequence.

tBLASTx A type of BLAST search in which a nucleotide sequence
is compared with the contents of a nucleotide sequence
database to find sequences with regions homologous to
regions of the original sequence. In a tBLASTx search,
both the query sequence and the sequence database are
translated in all six reading frames, and the resulting
sequences are compared to discover homologous
regions.

Figure 7 shows how BLAST works with your federated system.

Figure 7. How the BLAST wrapper works

86 DB2 LSDC Planning, Installation, and Configuration Guide

On the client side, users or applications submit SQL statements with
BLAST-specific parameter-passing predicates that map to standard BLAST
options. The SQL statements with the input predicates are sent to your DB2®

Universal Database federated database system with the BLAST wrapper
installed.

The BLAST wrapper transforms the query into a format understandable by
the BLAST application and sends the transformed query to your BLAST
server. This server can be a separate machine from the machine with the
federated system. A special daemon program runs on your BLAST server. This
daemon, using information from a daemon configuration file, receives the
query request from the federated system and sends it to the BLAST
application. The BLAST application then runs against a BLAST-able data
source in the usual manner.

The results are returned to BLAST and then to the daemon. The daemon
returns the retrieved data to the BLAST wrapper. The wrapper transforms the
data into a relational table format, and returns this table to the user or
application. The returned data contains two parts:
v A series of standard, fixed columns familiar to BLAST users, and
v User-configured definition line information.

The following example illustrates how relational information is extracted from
BLAST-able data sources. Data moves from raw fasta file format to a
BLAST-able data set to a relational table that can be joined with other data
sources in your federated system.

Figure 8 on page 88 is a sample fasta file containing four definition line and
nucleotide sequence records.

Chapter 6. BLAST as a data source 87

The standard formatdb application transforms the fasta file to a BLAST-able
data set. The data is now ready for querying by SQL through a federated
system with the BLAST wrapper installed and registered.

The following query, sent by the user or an application at the client end, is
transformed by the BLAST wrapper. It then runs against the BLAST-able data
set.

>7:4986 PMON5744
GTTCTTCCCAGTGCCCAAGTCCATTCTGACATCAATGAAGAAGGTAAAATCCCTGCGTGATCCCTCTGCC
AAGATGTCGAAATCAGACCCGGATAAACTAGCTGCTGTCAGAATAACAGACAGCCCGGAGGAGATCGTGC
AGAAGTTCCGCAAGGCTGTGACGGACTTCACCTCGGAGGTCACCTACGACCCGGCCAGGCGAGGAGGCGT
GTCCAACTTGGTGGCCATCCACGCGGCAGTGACCGGACTCCCGGTGGAGGAGGTGGTCCGCCGAAGTGCT
GGCATCAACACCGCTGGCTACAAGTTGGTGGTGGCGGAGGCTGTGATTGAGAGATTTGCACCAATTAAGA
GTGAAATTGAAAAACTGAAGAGGAACAAGGACCACCTAGAGAAGGTTTTACAAGTTGGGTCGGCAAAAGC
CAAAGAATTAGCATATCCCGTGTGCCAGGAGGTGAAGAAATTGGTGGGGTTTCTATAGGCAGTCTCACCT
AGTCCCAGAAAATGTTTTTTATCTTGTGGTCTGCTTGCACACTCAGTCTAATAAAGGCAGCTTTCCTAAG
ACGCCAACAATTCCAGTTTGGGGATGCTTAGTTTACT
>8:9747 PMON5699
AAGAAGTTCTTGTTAGAACTTTCCACCTCCGGCTTCCCCTCCACCTCTCTTACTGTCCCAACCTTCTGAG
ACGCTTTTTCTCCTCCCGAGGATTTATCTCTTTCTCTCTCTCTCTCTCTCTCTCTTTTTTTTTTTCCCCT
TTTCCCCCCCCGAGGCTGGTTTTGCTTTGGGGAGGGGGGGTTTTTTAAAGGGGCCGGGGGGGCCCCCTTT
CTCCCCCCTAATGGGGTTAATTAATAATGGGGGGGGGGGTTTTTTTTTTTTAAACCCCTATTTGGTCCGG
CCCGGGGATTTCCCCCCCCCCCCCCTTGCCCGGTTCCGGGGCCCGGAGGAGGGGGGGAAAAGGGCGGGAA
CCTTTGGTAGTTTCCCCTCGGAAAAAAATTTTTCGGGGGGGAAAACCTCCCT
>13:6512 PMON5498
GATAAGAGGCAGAATAGAAGACTGGACTACTTCTCTCCTAAAAACACATTTAAAACTAAGCCTGAGCAAT
CTCCACCCAAATGGACCGGAAACCTTAAAAAAGAATCCTACTCCTGAAGAAAAAGAGGAGGACACATCAA
GAGGTAGAAGGGGCGATTTCATGATATAAACAACCCCATACCTCCAGAGTGGGAAGCTCCACAGACTGAA
AACTAACTGGTTCACAGAAACTCACCTACAGGAGTGAGCCCCACATCAAACCCTCGAATGTGGGGATCTG
GCACTGGTAGAAAGAGCCCCTGGAGCATCTGGCATTGAAGGCCAGTGGGGCTTGTGTGCAGGAGATCCAC
AGGACTAGGGGAAACGGAGACCCCCATTCTTAAAAGGTGCACACAGACTTTTACGTGCACTGGGTCCCAG
TGCAAAGCAAAGTCTCCATAGGAATCTGGGTCAAACCTGACTGCAGTTCTTGGAGGACCTCCTGGGAAAG
CAAGGGTGAATGTGGCTTCTTGTGGGGAAAGGACATTGGAAGCAAAGCTCTTGGGAATATTCATCAGTGT
GC
>15:8924 PMON5426
GGAGAAACTGACTCCTGAGCAGCTGCAATTCATGCGGCAGGTGCAGCTCGCCCAGTGGCAGAAGACGCTG
CCACAGCGGCGGACCCGGAACATCGTGACCGGCCTGGGCATCGGGGCGCTGGTGTTGGCAATTTGTATCC
GTTTGGACTGTAGACTCAGGGAGACCGCATTTAGGGGAACAGGAAGGGCAGCAGGGGCGTGTAGGAGGGC
AGTGTGGGGGTGGTAGAAGGAGCCCGAGATATGAAAACCTTGGCTCCTTTTAACTCTGAATCAAGCGTTT
GGTGTACCTTACGTTGTCATTTTAAAGGTGTATTTTAGTATAATTGATTAATGATTACGGAGTCGGGTGA
GGGCTCCCAGGAGCAGACGGCAGAAGATCGAATTTGGGAGGATGATCAGCAGCGGTGGTTGAGCAAGTGT
GGGAAAAGGGAATGCGCACATTCCACGTGGTTTCCTGAACCCACCTCCCCAGATGGTTACACCTTCTACT
CGGTGTCCCAGGAGCGTTTCTTGGATGAGCTGGAGGATGAGGCCAAAGCTGCTC

Figure 8. Sample fasta file, nucleo1

88 DB2 LSDC Planning, Installation, and Configuration Guide

SELECT Unique_ID, Experiment_Number, Organism_Number, HSP_Info, Score
FROM nucleo1
WHERE BlastSeq = ’ACATTCTTATAGAGTATTGCTACTCCTCCAGGATAGAGTCATCTCT
GGTCTCCAGAGCCACCGCTGGCTACAAGTTGGTGGTGGCGGAGGCTGTGATTGAGAGATTTG
CACCAATACAGAAACTCACCTACAGGAGTGAGCGGGTGGTAGAAGGAGCCCGAGATATGAAA
ACCTTGTTTCAAGACCCCATTGTCACCGGGG’;

The results of the query are transformed by the BLAST wrapper into a
relational table format shown in Table 21.

Table 21. BLAST returns results in relational table form when integrated into your
federated system

Unique ID Experiment
number

Organism
number

HSP_INFO SCORE

PMON5744 4986 7 Identities = 57/201
(28%), Positives =
57/201 (28%), Gaps
= 0/201 (0%)

+1.13487000000000E+002

PMON5426 8924 15 Identities = 35/201
(17%), Positives =
35/201 (17%), Gaps
= 0/201 (0%)

+6.98754000000000E+001

PMON5498 6512 13 Identities = 26/201
(13%), Positives =
26/201 (13%), Gaps
= 0/201 (0%)

+5.20342000000000E+001

The data is in a fully relational form and can be joined with data from other
data sources used by your laboratory. Combining the results of several data
sources can lead to insights not readily or efficiently discovered prior to the
implementation of your federated system.

Related concepts:

v “What are table-structured files?” on page 13
v “What is Documentum?” on page 31
v “What is Excel?” on page 69
v “What is XML?” on page 111

Related tasks:

v “Adding BLAST to a federated system” on page 90

Chapter 6. BLAST as a data source 89

Adding BLAST to a federated system

Procedure:

To add the BLAST data source to a federated server:
1. Verify that the correct version of the blastall executable and matrix files are

installed.
2. Configure the BLAST daemon.
3. Start the BLAST daemon.
4. Register the wrapper using the CREATE WRAPPER statement.
5. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
6. Register the server using the CREATE SERVER statement.
7. Register nicknames using the CREATE NICKNAME statement.

The statements can be run from the DB2 command line processor. After the
BLAST wrapper is added to your federated system, you can run queries
against the BLAST data source.

Related tasks:

v “Verifying that the correct version of the blastall executable and matrix files
are installed” on page 91

v “Configuring the BLAST daemon” on page 91
v “Starting the BLAST daemon” on page 94
v “Registering the BLAST wrapper” on page 95
v “Setting the DB2_DJ_COMM environment variable for the BLAST wrapper”

on page 96
v “Registering the server for a BLAST data source” on page 97
v “Registering nicknames for BLAST data sources” on page 98
v “Adding table-structured files to a federated system” on page 16
v “Adding Documentum to a federated system” on page 33
v “Adding Excel to a federated system” on page 71
v “Adding XML to a federated system” on page 115

90 DB2 LSDC Planning, Installation, and Configuration Guide

Verifying that the correct version of the blastall executable and matrix files are
installed

This task is part of the main task for Adding BLAST to a federated system. Verify
that you have the latest version of the blastall executable and BLOSUM62,
BLOSUM80, PAM30, and PAM70 matrix files installed on your BLAST server
machine. If you don’t, you must install the binary files and the matrix files.
The matrix files must be in the same directory as the blastall executable.

Procedure:

To check the version level of your blastall executable and matrix files:
1. Run a BLAST search from the command line and note the version number

located in the output file.
2. If you do not have the lastest version of the blastall executable and matrix

files, download the files from the NCBI website:
ftp://ftp.ncbi.nih.gov/blast/executables.

The next task in this sequence of tasks is Configuring the BLAST daemon.

Related tasks:

v “Configuring the BLAST daemon” on page 91

Configuring the BLAST daemon

This task is part of the main task for Adding BLAST to a federated system. The
BLAST wrapper requires a BLAST daemon to be running on your
UNIX-based machine accessible via TCP/IP from your DB2 Universal
Database federated system. The daemon runs separately from the wrapper
and DB2 Universal Database and listens for BLAST job requests from the
wrapper. The daemon executable file, db2blast_daemon, can reside in any
directory on the BLAST server machine.

During DB2 Universal Database installation, the daemon executable is placed
in the /usr/opt/db2_08_01/bin directory on AIX, and in the
/opt/IBM/db2/V8.1/bin directory on the other Unix platforms, of the machine
on which the federated server is being installed. If, in your environment,
BLAST runs on a different machine, you must copy the daemon to a location
of your choice on that machine.

The BLAST daemon must have:
v Execute access to the blastall binary file so that it can run BLAST searches.
v Write access to a directory in which it can write temporary files.

Chapter 6. BLAST as a data source 91

v Read access to at least one BLAST-able data source against which BLAST
searches can be run. The blastall executable must have read access to both
the data file and the BLAST index files generated by the formatdb program.

The BLAST daemon requires a configuration file. A sample daemon
configuration file, named BLAST_DAEMON.config, is placed in the directory
DB2PATH/samples/lifesci, where DB2PATH is the directory in which DB2
Universal Database is installed. BLAST_DAEMON.config is the default name for
the file.

Copy the configuration file to any location accessible to the daemon, rename it
if you want, and edit it to work with your data source. By default the
blast_daemon looks for its configuration information in the working directory
from which it was started.

Procedure:

To configure the daemon, specify the following options in the configuration
file. For options requiring paths, you can specify relative paths. Relative paths
are relative to the directory from which the daemon process was started.

DAEMON_PORT
This is the network port on which the daemon will listen for BLAST
job requests submitted by the wrapper.

MAX_PENDING_REQUESTS
This is the maximum number of BLAST job requests that can be
blocking on the daemon at any one time. This number does not
represent the number of BLAST jobs that are running concurrently,
only the number of job requests that can block at one time. It is
recommended that you set this to a number greater than five. The
BLAST daemon does not restrict the number of BLAST jobs that can
run concurrently.

DAEMON_LOGFILE_DIR
This is the directory in which the daemon will create its log file. This
file will contain useful status and error information generated by the
BLAST daemon.

Q_SEQ_DIR_PATH
This is the directory in which a temporary query sequence data file
will be created by the daemon. This temporary file is cleaned up once
the BLAST job completes.

BLAST_OUT_DIR_PATH
This is the directory in which the daemon will create the temporary
file to store the BLAST output data. Data will be read from this file

92 DB2 LSDC Planning, Installation, and Configuration Guide

and passed back to the wrapper via the network connection, at which
point the daemon cleans up the temporary file.

BLASTALL_PATH
This is the fully-qualified name of the BLAST executable file on the
machine running the daemon.

database specification entry
Specifies the location of a BLAST-able data source. For the daemon to
function properly, you must specify each entry name used in the
configuration file in the DATASOURCE option of the CREATE
NICKNAME statement when you create the nickname for the data
source. For more information on the CREATE NICKNAME statement,
see ″Registering nicknames for BLAST data sources″ in the Related
tasks section below.

The configuration file must contain at least one database specification
entry in the following form:
entry_name = path to BLAST-able_data_source

For example, to specify the GenBank BLAST-able data source, you
would add the following line to the daemon configuration file:
genbank=/dsk/1/nucl_data/genbank

The path indicated in a database specification entry must contain the
following files:
v The original fasta-formatted data
v The three index files.

– For nucleotide data sources, the index files have these extensions:
- .nhr
- .nin
- .nsq

– For amino acid data sources, the index files have these
extensions:
- .phr
- .pin
- .psq

The database specification entry must indicate the file name of the file
that contains the original Fasta-formatted data. The three index files
must have the same root file name as the file containing the original
Fasta-formatted data.

The configuration file must end with a newline character.

Chapter 6. BLAST as a data source 93

Example:

The following example shows the contents of a sample configuration file, with
the required options and BLAST-able data source specification for GenBank
and SWISS-PROT.
DAEMON_PORT=4007
MAX_PENDING_REQUESTS=10
DAEMON_LOGFILE_DIR=./
Q_SEQ_DIR_PATH=./
BLAST_OUT_DIR_PATH=./
BLASTALL_PATH=./blastall
genbank=/dsk/1/nucl_data/genbank
swissprot=/dsk/1/prot_data/swissprot

The next task in this sequence of tasks is Starting the BLAST daemon.

Related tasks:

v “Verifying that the correct version of the blastall executable and matrix files
are installed” on page 91

v “Starting the BLAST daemon” on page 94
v “Registering nicknames for BLAST data sources” on page 98

Starting the BLAST daemon

This task is part of the main task for Adding BLAST to a federated system.
Before you can access BLAST data sources, you must have the BLAST daemon
running.

Prerequisites:

Before you start the BLAST daemon, you must have write access to all paths
listed under the DAEMON_LOGFILE_DIR, BLAST_OUT_DIR_PATH, and
Q_SEQ_DIR_PATH entries in the configuration file.

Procedure:

To start the BLAST daemon if you are in the daemon installation directory,
did not change the name of the daemon configuration file, and the
configuration file is in the same directory as the daemon executable file, type
the following command at the command line:
db2blast_daemon

The executable starts a new process in which the BLAST daemon runs.

94 DB2 LSDC Planning, Installation, and Configuration Guide

To start the BLAST daemon if you changed the name of the daemon
configuration file or are not in the directory in which the daemon
configuration file is located, you must use the -c option on the wrapper
daemon command to point the daemon executable to the new name or
location.

For example, the following command causes the wrapper daemon to look for
its configuration information in a file called BLAST_D.config in the
subdirectory cfg.
db2blast_daemon -c cfg/BLAST_D.config

The next task in this sequence of tasks is Registering the BLAST wrapper.

Related tasks:

v “Configuring the BLAST daemon” on page 91
v “Registering the BLAST wrapper” on page 95

Registering the BLAST wrapper

This task is part of the main task for Adding BLAST to a federated system. You
must register the wrapper in order to access a data source. Wrappers are
mechanisms that federated servers use to communicate with and retrieve data
from data sources. Wrappers are installed on your system as library files.

Procedure:

To register the BLAST wrapper, submit the CREATE WRAPPER statement.

For example, to create a BLAST wrapper on AIX called my_blast from the
default library file, libdb2lsblast.a, submit the following statement:
CREATE WRAPPER my_blast LIBRARY ’libdb2lsblast.a’

OPTIONS(DB2_FENCED ’N’);

For a table of default library filenames for the BLAST wrapper by supported
platform, see ″After installing DB2 Life Sciences Data Connect″ in the Related
tasks section below. For more information on the CREATE WRAPPER
statement, see the DB2 SQL Reference.

The next task in this sequence of tasks is Setting the DB2_DJ_COMM
environment variable for the BLAST wrapper.

Related tasks:

v “Registering the table-structured file wrapper” on page 16
v “Registering the Documentum wrapper” on page 36

Chapter 6. BLAST as a data source 95

v “Registering the Excel wrapper” on page 71
v “Starting the BLAST daemon” on page 94
v “Setting the DB2_DJ_COMM environment variable for the BLAST wrapper”

on page 96
v “Registering the XML wrapper” on page 116

Setting the DB2_DJ_COMM environment variable for the BLAST wrapper

This task is part of the main task for Adding BLAST to a federated system. To
improve performance when BLAST data sources are accessed, set the
DB2_DJ_COMM environment variable. This variable determines whether the
federated server loads the wrapper upon initialization.

Procedure:

To set the DB2_DJ_COMM environment variable, submit the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

For example:
db2set DB2_DJ_COMM=’libdb2lsblast.a’

Ensure that there are no spaces on either side of the equal sign (=).

There is overhead associated with loading the wrapper libraries during
database startup. To avoid this overhead, only specify libraries you intend to
access.

For more information about the DB2_DJ_COMM environment variable, see
the DB2 Administration Guide.

The next task in this sequence of tasks is Registering the server for a BLAST data
source.

Related tasks:

v “Setting the DB2_DJ_COMM environment variable for the table-structured
file wrapper” on page 17

v “Setting the DB2_DJ_COMM environment variable for the Documentum
wrapper” on page 37

v “Registering the BLAST wrapper” on page 95
v “Registering the server for a BLAST data source” on page 97
v “Setting the DB2_DJ_COMM environment variable for the XML wrapper”

on page 116

96 DB2 LSDC Planning, Installation, and Configuration Guide

Registering the server for a BLAST data source

This task is part of the main task for Adding BLAST to a federated system. After
the wrapper is registered, you must register a corresponding server.

Procedure:

To register the BLAST server to the federated system, use the CREATE
SERVER statement.

For each machine on which the BLAST executable and daemon are installed
in your environment, you must register one server for each type of BLAST
search you want to run using that instance of the BLAST executable and
daemon.

For example, to register a server called blast_server1 for the my_blast wrapper
created using the CREATE WRAPPER statement that will be used for BLASTn
searches, submit the following statement:
CREATE SERVER blast_server1
TYPE blastn

VERSION 2.1.2
WRAPPER my_blast
OPTIONS (NODE ’big_rs.company.com’, PORT ’4007’)

Arguments

TYPE Determines the type of BLAST search performed using the given
server. This argument is required. It must be set to one of the
following values: blastn, blastp, blastx, tblastn, tblastx.

VERSION
Specifies the version of the server that you are using. It should be set
to the version of blastall that you are running. This argument is
required.

WRAPPER
Specifies the name of the wrapper that you registered using the
CREATE WRAPPER statement. This argument is required.

Options

NODE
Specifies the host name of the system on which the BLAST daemon
process is running. This option is required.

PORT Specifies the port number on which the daemon will listen for BLAST
job requests. The port number must be the same number specified in
the daemon_port option of the daemon configuration file. The default
is 4007. This option is optional.

Chapter 6. BLAST as a data source 97

For more information on the CREATE SERVER statement, see the DB2 SQL
Reference.

The next task in this sequence of tasks is Registering nicknames for BLAST data
sources.

Related tasks:

v “Registering the server for table-structured files” on page 18
v “Registering the server for Documentum data sources” on page 38
v “Registering the server for an Excel data source” on page 72
v “Setting the DB2_DJ_COMM environment variable for the BLAST wrapper”

on page 96
v “Registering nicknames for BLAST data sources” on page 98
v “Registering the server for an XML data source” on page 117

Registering nicknames for BLAST data sources

This task is part of the main task for Adding BLAST to a federated system. After
you register a server, you must register a corresponding nickname. Nicknames
are used when you refer to a BLAST data source in a query.

Procedure:

To register a BLAST nickname, use the CREATE NICKNAME statement. .
Since each type of BLAST search is handled by a separate server, you must
define a separate nickname for each type of BLAST search that you want to
run against a given BLAST-able data source.

The nickname specifies column information for the definition line portion of
the data source. All other columns are fixed. For more information on
definition line parsing, see “Definition line parsing” on page 100. For more
information on fixed columns, see “Fixed columns” on page 101.

The syntax for the CREATE NICKNAME statement for BLAST is:

�� CREATE NICKNAME nickname �

,

(column-name column-information) �

� FOR SERVER server-name OPTIONS (DATASOURCE ’data_source_name’ , �

98 DB2 LSDC Planning, Installation, and Configuration Guide

� TIMEOUT ’timeout_duration’) �

column-information:

data-type column-option nickname-column-options

data-type:

INTEGER
INT
FLOAT

(integer)
DOUBLE

PRECISION
VARCHAR (integer)

column-option:

NOT NULL

nickname-column-options:

OPTIONS (INDEX ’index_number’ , DELIMITER ’delimiter’ �

�
DEFAULT ’new_default_value’

)

For more information on the CREATE NICKNAME statement, see the DB2
SQL Reference.

Nickname column options
Nickname column option values must be enclosed in single quotation marks.

INDEX
The ordinal number of the column on which this option appears in
the group of definition line columns. This option is required. For more
information on definition line parsing, see “Definition line parsing” on
page 100.

DELIMITER
The delimiter characters that should be used to determine the end
point of the definition line information for the column on which this
option appears. If more than one character appears in this option’s
value, then the first occurrence of any one of the characters will signal
the end of this field’s information. The default is end of line. This

Chapter 6. BLAST as a data source 99

option is required, except for the last column specified if you want
that column to contain the remainder of the definition line. For more
information on definition line parsing, see “Definition line parsing”.

DEFAULT
Specifies a new default value for the following input fixed columns:
v E_value
v QueryStrands
v GapAlign
v NMisMatchPenalty
v NMatchReward
v Matrix
v FilterSequence
v NumberOfAlignments
v GapCost
v ExtendedGapCost
v WordSize
v ThresholdEx

This new value overrides the pre-set default values. The new default
value must be of the same type as the value indicated for a given
column. For more information on input fixed columns, see “Input
fixed columns” on page 101. This option is optional.

Nickname options
Nickname option values must be enclosed in single quotation marks.

DATASOURCE
The name of the data source against which the BLAST search will be
run. The exact string used here must be present in the configuration
file of the BLAST daemon. For more information on the configuration
file, see ″Configuring the BLAST daemon″ in the Related tasks section
below. This option is required.

TIMEOUT
The maximum time, in minutes, that the BLAST wrapper will wait for
results from the daemon. The default is 60. This option is optional.

Definition line parsing
The definition line, also called the defline, is like a key for each sequence in
the BLAST-able data source and is returned as part of each BLAST hit.

If you are interested in including the definition line information in your
results table, you must specify the definition line columns in the CREATE
NICKNAME statement. Each column specification must specify an INDEX

100 DB2 LSDC Planning, Installation, and Configuration Guide

option. The DELIMITER option must be specified for each column, except for
the last column specified if you want that column to contain the remainder of
the definition line.

For more information on the INDEX and DELIMITER options, see “Nickname
column options” on page 99.

The definition line fields must be of type integer, float, double, or varchar.

Note: If data are found in the Accession Number field of a BLAST hit, these
data are inserted before data in the Definition field of that BLAST hit.
The resulting definition line that contains the Accession Number data
followed by the Definition field data is parsed by the wrapper.

For an example showing how to specify definition line columns in the
CREATE NICKNAME statement, see “CREATE NICKNAME example” on
page 104.

Fixed columns
The CREATE NICKNAME statement automatically creates fixed columns. The
fixed columns do not appear in the CREATE NICKNAME statement, but are
part of the nickname definition and can be referenced in SQL queries. There
are two types of fixed columns, input and output.

Input fixed columns
Input fixed columns are used as parameter-passing predicates in SQL queries.
They pass standard BLAST switches to BLAST. BLAST then runs against the
specified data source using these switches. Input fixed columns can also be
referenced in the query select list and returned as part of the results table.
Input fixed columns are listed in Table 22.

Table 22. Input fixed columns

Name Data type Description

BlastSeq varchar(32000) Passes the query sequence to the BLAST
wrapper.

E_Value double Both an input and an output parameter. As
an input parameter, this column indicates to
the BLAST wrapper the upper limit of expect
values that should be returned from blastall.

QueryStrands integer Specifies which strands should be compared
when performing a BLASTn search. A value
of 1 indicates that the top strand should be
used, 2 indicates the bottom strand, and 3
indicates that both strands should be
compared.

Chapter 6. BLAST as a data source 101

Table 22. Input fixed columns (continued)

Name Data type Description

GapAlign char(1) Indicates to the wrapper whether gapped
alignments are permitted in the BLAST
output.

Matrix varchar(50) Determines which substitution matrix is used
by blastall to determine the degree of
similarity between pairings of amino acids.
Only those BLAST search types that compare
amino acids to amino acids use this
predicate.

NMisMatchPenalty integer Specifies the value that blastall deducts from
the score of an alignment if one of the pairs
of nucleotides in the homologous region does
not match. Only those BLAST search types
that compare nucleotides to nucleotides use
this predicate.

NMatchReward integer Specifies the value that blastall adds to the
score of an alignment for each of the pairs of
nucleotides in the homologous region that do
match. Only those BLAST search types that
compare nucleotides to nucleotides use this
predicate.

FilterSequence char(1) Indicates to blastall whether to perform
filtering to remove biologically uninteresting
segments from the query sequence. If the
search type is BLASTn, the filter used is
DUST. Otherwise, filtering is performed by
SEG.

NumberOfAlignments integer Specifies how many HSP alignments to
include in the BLAST output.

GapCost integer Specifies the value that blastall deducts from
the score of an alignment if a gap must be
introduced in either the query sequence or
the hit sequence to allow the length of the
alignment to grow.

ExtendedGapCost integer Specifies the value that blastall deducts from
the score of an alignment if a gap that was
already introduced in either the query
sequence or the hit sequence must be
extended by one nucleotide or amino acid to
allow the length of the alignment to grow.

WordSize integer Indicates to blastall the length of the initial
hits that blastall initially searches in the
database.

102 DB2 LSDC Planning, Installation, and Configuration Guide

Table 22. Input fixed columns (continued)

Name Data type Description

ThresholdEx integer Indicates the score threshold below which
BLAST does not attempt to extend a hit any
further.

The supported BLAST search types and switches for each input fixed column
are listed in Table 23

Table 23. BLAST search types and switches supported by the input fixed columns

Name BLAST
search
types

BLAST
switch

Req? Default

BlastSeq n, p, x, tn,
tx

–l Y N/A

E_Value n, p, x, tn,
tx

–e N 10

QueryStrands n S N 3

GapAlign n, p, x, tn,
tx

–g N T

Matrix p, x, tn, tx –n N BLOSUM62

NMisMatchPenalty n –q N –3

NMatchReward n –r N 1

FilterSequence n, p, x, tn,
tx

–F N T

NumberOfAlignments n, p, x, tn,
tx

–b N 250

GapCost n, p, x, tn,
tx

–G N 11

ExtendedGapCost n, p, x, tn,
tx

–E N 1

WordSize (for Blastn, a value
less than 7 is invalid)

n, p, x, tn,
tx

–W N 11 –BLASTn

3 –BLASTp

ThresholdEx n, p, x, tn,
tx

–f N 0

Output fixed columns
Output fixed columns are returned in the query results table and can be used
as predicates. Output fixed columns are listed in Table 24 on page 104.

Chapter 6. BLAST as a data source 103

Table 24. Output fixed columns

Name Data type Description

Score double The computed score for an HSP as
reported in the BLAST results.

E_value double Both an input and an output parameter.
As an output parameter, this column
provides the computed score for an
HSP as reported in the BLAST results.

Length integer The length of the hit sequence as
reported in the BLAST results.

HSP_Info varchar(100) The information string for the given
HSP, as reported by BLAST. This string
contains information about the number
of nucleotides or amino acids that
matched between the query sequence
and the hit sequence.

HSP_Q_Start integer The numeric position of the first
homologous nucleotide or amino acid
on the query sequence.

HSP_Q_End integer The numeric position of the last
homologous nucleotide or amino acid
on the query sequence.

HSP_Q_Seq varchar(32000) The segment of the query sequence
beginning at HSP_Q_Start and ending
at HSP_Q_End.

HSP_H_Start integer The numeric position of the first
homologous nucleotide or amino acid
on the hit sequence.

HSP_H_End integer The numeric position of the last
homologous nucleotide or amino acid
on the hit sequence.

HSP_H_Seq varchar(32000) The segment of the hit sequence
beginning at HSP_H_Start and ending
at HSP_H_End.

HSP_Midline varchar(32000) The string output by BLAST that
indicates the degree of homology
between the amino acids or nucleotides
at each position in the homologous
regions of the query and hit sequences.

CREATE NICKNAME example
The following CREATE NICKNAME statement defines the nickname genbank.

104 DB2 LSDC Planning, Installation, and Configuration Guide

It assumes the definition field in a BLAST result contains the following
information:
>276342 15:8924 PMON5426

where:

276342 The accession field of the BLAST result.

15:8924 PMON5426
The definition field in a BLAST result containing an organism number
followed by an experiment number and then a unique identifier.

With this information, the following nickname is created:
CREATE NICKNAME genbank (

acc_num integer OPTIONS(INDEX ’1’, DELIMITER ’ ’),
org_num integer OPTIONS(INDEX ’2’, DELIMITER ’:’),
exp_num integer OPTIONS(INDEX ’3’, DELIMITER ’ ’),
u_id varchar(10) OPTIONS(INDEX ’4’))
FOR SERVER blast_server1

OPTIONS(DATASOURCE ’genbank’, TIMEOUT ’300’);

The column acc_num would contain 276342, the column org_num would
contain 15, the column exp_num would contain 8924, and the column u_id
would contain PMON5426.

After you submit the CREATE NICKNAME statement, you can use the
nickname genbank to query your federated system. You can also join the
genbank nickname with other nicknames and tables in your federated system.

There are no further tasks in this sequence of tasks.

Related tasks:

v “Registering nicknames for table-structured files” on page 19
v “Registering nicknames for Documentum data sources” on page 40
v “Registering nicknames for Excel data sources” on page 73
v “Configuring the BLAST daemon” on page 91
v “Registering the server for a BLAST data source” on page 97
v “Registering nicknames for XML data sources” on page 118
v Chapter 8, “Specifying costing nickname options” on page 133

Chapter 6. BLAST as a data source 105

Constructing BLAST SQL queries

SQL for BLAST data sources must contain only special input predicates used
to pass standard BLAST switches to the blastall executable file.

Restrictions:

To be valid, every query passed to the BLAST wrapper must contain at least
the BlastSeq input predicate. All other predicates are optional.

Procedure:

To construct a BLAST query, use the input predicates in the WHERE clause of
your SQL statement.

The following example shows three input predicates: BlastSeq, GapCost, and
NMisMatchPenalty.
Select * from blast b where
BlastSeq = ’GTCCAGCC...’ AND
GapCost = -10 AND
NMisMatchPenalty = -4;

For a list of data types, descriptions, BLAST switches, and search types
supported for each input predicate, see ’Registering nicknames for BLAST
data sources’ in the Related tasks section below.

Related tasks:

v “Sample BLAST queries” on page 106

Sample BLAST queries

Several sample BLAST queries are provided below to illustrate how queries
are constructed for BLAST data sources.

Procedure:

To run queries, use the examples below as a guide.

In these queries, the name used for each nickname indicates the type of
BLAST search and the data source. This is done so that the registration
statements do not need to be listed with each sample query. Also, some of the
queries make use of other hypothetical data sources so that these examples
can illustrate the behavior of the wrapper when joined with other data
sources.

106 DB2 LSDC Planning, Installation, and Configuration Guide

Query 1
select *
from blastn_genbank
where BlastSeq =
’caacccctccagccgagttgtcaatggcgaggaagctgttccccac’;

When this SQL statement is executed, the wrapper will perform a BLASTn
search of GenBank using the indicated sequence. The wrapper will return all
of the available columns, including both the input parameter columns and the
BLAST result columns.

Query 2
select *
from blastn_genbank
where BlastSeq =
’caacccctccagccgagttgtcaatggcgaggaagctgttccccac’
and GapCost = 8 and NmisMatchPenalty = -4;

When this SQL statement is executed, the wrapper will perform a BLASTn
search of GenBank using the indicated sequence. In addition, the wrapper will
pass the two indicated parameters to the daemon, and they will be passed to
the blastall command line. The wrapper will return all of the available
columns, including both the input parameter columns and the BLAST result
columns.

Query 3
select blp.*
from blastp_swissprot blp, protein_db prdb
where prdb.keyword = ’malic enzyme’
and blp.BlastSeq = prdb.sequence;

When this SQL statement is executed, the wrapper will perform zero or more
BLASTp searches of SWISS-PROT, depending on the number of sequences
returned from a hypothetical protein sequence database. This statement will
be broken into two separate queries by DB2, and one BLASTp search will be
run for each row that is returned from the hypothetical protein database. The
wrapper will return all of the available columns, including both the input
parameter columns and the BLAST result columns.

Query 4
select Score, E_Value, HSP_Info, HSP_Q_Seq, HSP_H_Seq, HSP_Midline
from blastx_swissprot
where BlastSeq = ’gagttgtcaatggcgagg’
and GapCost = 8;

When this SQL statement is executed, the wrapper will perform a BLASTx
search of SWISS-PROT using the indicated sequence. In this case, blastall will

Chapter 6. BLAST as a data source 107

translate the input sequence in all six reading frames and perform the
homology search using each of the six newly created protein sequences. The
HSPs in the results will contain amino acid-amino acid alignments, rather
than nucleotide-nucleotide alignments. The supplied parameter will be passed
to the daemon and then to blastall via the command line. The wrapper will
return only those columns that are specifically requested in the query.

Query 5
select tblx.Score, tblx.E_Value, tblx.HSP_Info tblx.HSP_Q_Seq,
HSP_H_Seq, HSP_Midline
from tblastx_genbank tblx, gen_exp_database gedb
where tblx.BlastSeq = gedb.sequence
and gedb.organism = ’interesting organism’
and GapCost = 8
and FilterSequence = ’F’;

When this SQL statement is executed, the wrapper will perform zero or more
tBLASTx searches of GenBank, depending on the number of sequences
returned from a hypothetical gene expression database. The statement will be
broken into two separate queries by DB2, and one tBLASTx search will be run
for each row that is returned from the hypothetical gene expression database.
In this case, blastall will translate the input sequence and all of the sequences
in GenBank in all six reading frames and perform the homology search using
each of the six newly created query protein sequences and all of the newly
created database protein sequences. The HSPs in the results will contain
amino acid-amino acid alignments, rather than nucleotide-nucleotide
alignments. The supplied parameters will be passed to the daemon and then
to blastall via the command line. The wrapper will return only those columns
that are specifically requested in the query.

Related tasks:

v “Running queries against Documentum data sources” on page 55
v “Running queries against Excel data sources” on page 74
v “Running queries against XML data sources” on page 125

Optimization tips for the BLAST wrapper

Running both the wrapper and the daemon on the same server can eliminate
potential network communication bottlenecks.

Related reference:

v “Optimization tips and considerations for the table-structured file wrapper”
on page 25

108 DB2 LSDC Planning, Installation, and Configuration Guide

Messages for the BLAST wrapper

This section lists and describes messages that you might encounter when
working with the wrapper for BLAST. For more information on messages, see
the DB2 Message Reference.

Table 25. Messages issued by the wrapper for BLAST

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason
″sqlno_crule_save_plans
[100]:rc (–2144272209) Empty
plan list detect″.)

The SQL query submitted to DB2 could
not be processed by the wrapper. Correct
the syntax and resubmit.

SQL1816N Wrapper
″BLAST_WRAPPER″ cannot
be used to access the ″type″
of data source (″<server
type>″ ″″) that you are trying
to define to the federated
database.

The CREATE SERVER statement used an
invalid TYPE. The type must be one of
the supported BLAST types.

SQL1817N The CREATE SERVER
statement does not identify
the ″version″ of data source
that you want defined to the
federated database.

The CREATE SERVER statement did not
specify the version.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Unable to
connect to daemon″.

The blast wrapper was not able to
connect to the daemon. The daemon
might not be running. It might be
misconfigured. The machine that it is
running on might be unreachable.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Blast daemon
timeout expired″.

No results were received from the
daemon before the timeout as specified
on the CREATE NICKNAME statement
elapsed. Increase the timeout or check to
see if there is a problem with the
daemon.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Blast
Daemon Failed″.

The daemon stopped communicating or
the results returned were not properly
formatted.

Chapter 6. BLAST as a data source 109

Table 25. Messages issued by the wrapper for BLAST (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Unknown
error from the blast daemon″.

The blast wrapper received an error code
from the daemon that it doesn’t
recognize. The daemon version might not
be compatible with the wrapper version.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″Column
rename not allowed″.

An ALTER NICKNAME statement was
issued trying to rename one of the
columns. Renaming a column is not
allowed.

SQL1822N Unexpected error code
″Unspecified Error″ received
from data source ″Blast
Wrapper″. Associated text
and tokens are ″XML parser
error″.

The Xerces parser is in an invalid state or
has thrown an exception.

SQL1823N No data type mapping exists
for data type ″<data type
name>″ from server ″<server
name>″.

The data type specified is not supported
by this column.

SQL1881N ″DEFAULT″ is not a valid
″COLUMN″ option for
″<column-name>″

The DEFAULT option was used on a
column that does not support it. Output
only columns and definition line columns
do not have default values.

SQL1882N The ″COLUMN″ option
″DEFAULT″ cannot be set to
″<option-value>″ for
″<column-name>″.

The value specified for the DEFAULT
option is of an incompatible type for the
column or is incorrectly formatted.

Related reference:

v “Messages for the table-structured file wrapper” on page 25
v “Messages for the Documentum wrapper” on page 62
v “Messages for the Excel wrapper” on page 78
v “Messages for the XML wrapper” on page 127

110 DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 7. XML as a data source

This chapter explains what XML is, how to add XML data sources to your
federated system, and lists the error messages associated with the XML
wrapper.

What is XML?

The Extensible Markup Language (XML) is a universal format for structured
documents and data. XML files have a file extension of xml. Like HTML, XML
makes use of tags (words bracketed by ’<’ and ’>’) for structuring data in the
document. A sample XML document is shown in Figure 9.

The XML wrapper enables use of SQL to query external XML documents
stored in files. Figure 10 on page 112 shows how the XML works with your
federated system.

<doc>
<customer id=’123’>

<name>...</name>
<address>...</address>
...
<order>

<amount>...</amount>
<date>...</date>

<item quant=’12’>
<name>...</name>

</item>
<item quant=’4’>...</item>
...

</order>
<order>...</order>
...
<payment>

<number>...</number>
<date>...</date>

</payment>
<payment>...</payment>
...

</customer>
<customer id=’124’>...</customer>

</doc)

Figure 9. Sample XML document

© Copyright IBM Corp. 2001, 2002 111

The XML Wrapper allows mapping of XML data from an external data source
into a relational schema composed of a set of nicknames. The structure of an
XML document is logically equivalent to a relational schema where the nested
and repeating elements are modeled as separate tables with foreign keys.

The nicknames corresponding to an XML document are organized into a tree
where the child nicknames model elements that are nested in the element
corresponding to the parent nickname.

There are basically two cases when a nested element should be modeled as a
separate nickname:
v Repeating elements
v Elements with distinct identity and rich structure

Child and parent nicknames are connected by primary/foreign keys generated
by the wrapper.

XPath expressions are used to map an XML document into a relational
schema composed of a set of nicknames. XPath is an addressing mechanism
for identifying the parts of an XML file – for example, the groups of nodes
and attributes within an XML document tree. The basic XPath syntax is
similar to file system addressing.

Figure 10. How the XML wrapper works

112 DB2 LSDC Planning, Installation, and Configuration Guide

Each nickname is defined by an XPath expression that identifies the XML
elements representing individual tuples, and a set of XPath expressions
specifying how to extract the column values from each element.

An Example:

The following example illustrates how the sample XML document, shown in
Figure 9 on page 111, is mapped into a set of nicknames, how parent and child
relationships are modeled using primary and foreign keys, how XPath
expressions are used to define individual tuples and columns within each
element of the document, and how a query can be run against the XML
document once it is registered to your federated system.

The sample XML document contains a set of customer elements each
enclosing several order and payment elements.

The order elements enclose several item elements.

The relationship between the elements is shown in Figure 11.

From this structure, the XML document can be mapped, using the CREATE
NICKNAME statement, into a relational schema using four nicknames:
v customers
v orders
v payments
v items

Figure 11. Tree structure of the sample XML document

Chapter 7. XML as a data source 113

The relationships between the nicknames are defined by specifying each
nickname as a parent or child nickname using special primary and foreign
key nickname column options, respectively. Each parent nickname must have
a special column designated with the a primary key column option. Children
of a parent are defined by having a special column that references the primary
key column of a parent nickname using a foreign key column option. The
designated primary and foreign nickname columns do not correspond to data
in your XML document as these nickname columns will contain keys
generated by the wrapper. A nickname can have multiple children while it
must have exactly one parent, except the root that has no parent.

For the sample XML document the customers nickname would have a
primary key defined, and the orders, payments, and items nicknames would
each have a foreign key defined that points to their parent nickname. The
orders and payments nicknames would have foreign keys pointing to
customers, and the items nickname would have a foreign key pointing to
orders.

To identify the XML elements representing individual tuples, one XPath
expression is created. In this example, all the customer elements can be
referenced using the //customer XPath expression and all the order elements
can be referenced using the .//order XPath expression.

A set of XPath expressions are created to specify how to extract the column
values from each element. In this example, the id attribute of the customer
elements, now a column defined in the nickname, can be referenced using the
./@id XPath expression. The name element of the customer elements can be
referenced by using the .//name XPath expression, and the address element of
the customer elements can be referenced by using the .//address/@street
XPath expression.

Once the XML document is mapped into a set of nicknames using the
CREATE NICKNAME statement, each nickname defined as a parent or child
using primary and foreign keys, with XPath expressions defining individual
tuples and columns within each element of the document, you can run SQL
queries against the XML document.

For more detailed information on how to create nicknames and for the syntax
of the CREATE NICKNAME statement, see ’Registering nicknames for XML
data sources’ in the Related tasks section below.

Related concepts:

v “What are table-structured files?” on page 13
v “What is Documentum?” on page 31
v “What is Excel?” on page 69

114 DB2 LSDC Planning, Installation, and Configuration Guide

v “What is BLAST?” on page 85

Related tasks:

v “Adding XML to a federated system” on page 115
v “Registering nicknames for XML data sources” on page 118

Adding XML to a federated system

Procedure:

To add an XML data source to a federated server:
1. Register the wrapper using the CREATE WRAPPER statement.
2. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
3. Register the server using the CREATE SERVER statement.
4. Register nicknames using the CREATE NICKNAME statement.
5. Create views for non-root nicknames

The statements can be run from the DB2 command line processor. After the
XML wrapper is added to your federated system, you can run queries against
an XML data source.

Related tasks:

v “Registering the XML wrapper” on page 116
v “Setting the DB2_DJ_COMM environment variable for the XML wrapper”

on page 116
v “Registering the server for an XML data source” on page 117
v “Registering nicknames for XML data sources” on page 118
v “Creating federated views for non-root nicknames (XML wrapper)” on page

123
v “Adding table-structured files to a federated system” on page 16
v “Adding Documentum to a federated system” on page 33
v “Adding Excel to a federated system” on page 71
v “Adding BLAST to a federated system” on page 90

Chapter 7. XML as a data source 115

Registering the XML wrapper

This task is part of the main task for Adding XML to a federated system. You
must register the wrapper in order to access a data source. Wrappers are
mechanisms that federated servers use to communicate with and retrieve data
from data sources. Wrappers are installed on your system as library files.

Procedure:

To register the XML wrapper, submit the CREATE WRAPPER statement.

For example, to create an XML wrapper on AIX called my_xmlfrom the default
library file, libdb2lsxml.a, submit the following statement:
CREATE WRAPPER my_xml LIBRARY ’libdb2lsxml.a’

OPTIONS(DB2_FENCED ’N’);

For a table of default library filenames for the XML wrapper by supported
platform, see ’After installing DB2 Life Sciences Data Connect’ in the Related
tasks section below. For more information on the CREATE WRAPPER
statement, see the DB2 SQL Reference.

The next task in this sequence of tasks is Setting the DB2_DJ_COMM
environment variable for the XML wrapper.

Related tasks:

v “Registering the table-structured file wrapper” on page 16
v “Registering the Documentum wrapper” on page 36
v “Registering the Excel wrapper” on page 71
v “Registering the BLAST wrapper” on page 95
v “Setting the DB2_DJ_COMM environment variable for the XML wrapper”

on page 116

Setting the DB2_DJ_COMM environment variable for the XML wrapper

This task is part of the main task for Adding XML to a federated system. To
improve performance when XML documents are accessed, set the
DB2_DJ_COMM environment variable. This variable determines whether the
federated server loads the wrapper upon initialization.

Procedure:

To set the DB2_DJ_COMM environment variable, submit the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

116 DB2 LSDC Planning, Installation, and Configuration Guide

db2set DB2_DJ_COMM=’libdb2lsxml.a’

Ensure that there are no spaces on either side of the equal sign (=).

There is overhead associated with loading the wrapper libraries during
database startup. To avoid this overhead, only specify libraries you intend to
access.

For more information about the DB2_DJ_COMM environment variable, see
the DB2 Administration Guide.

The next task in this sequence of tasks is Registering the server for an XML data
source.

Related tasks:

v “Setting the DB2_DJ_COMM environment variable for the table-structured
file wrapper” on page 17

v “Setting the DB2_DJ_COMM environment variable for the Documentum
wrapper” on page 37

v “Setting the DB2_DJ_COMM environment variable for the BLAST wrapper”
on page 96

v “Registering the XML wrapper” on page 116
v “Registering the server for an XML data source” on page 117

Registering the server for an XML data source

This task is part of the main task for Adding XML to a federated system. After
the wrapper is registered using, you must register a corresponding server.

Procedure:

To register the XML server to the federated system, use a CREATE SERVER
statement:
CREATE SERVER xml_server WRAPPER my_xml

where:

WRAPPER
Specifies the name of the wrapper that you registered with the
associated CREATE WRAPPER statement. This argument is required.

Note: The XML wrapper does not use the TYPE and VERSION keywords. An
error is issued if these keywords are used in the CREATE SERVER
statement.

Chapter 7. XML as a data source 117

The next task in this sequence of tasks is Registering nicknames for XML data
sources.

Related tasks:

v “Registering the server for table-structured files” on page 18
v “Registering the server for Documentum data sources” on page 38
v “Registering the server for an Excel data source” on page 72
v “Registering the server for a BLAST data source” on page 97
v “Setting the DB2_DJ_COMM environment variable for the XML wrapper”

on page 116
v “Registering nicknames for XML data sources” on page 118

Registering nicknames for XML data sources

This task is part of the main task for Adding XML to a federated system. You
must create nicknames that model the tree structure of your XML data source.
A parent nickname must be created to model the parent or root of the tree.
Child nicknames must be created to model elements that are nested in the
element corresponding to the parent nickname.

Parent and child nicknames are connected by primary and foreign keys
specified on the CREATE NICKNAME statement.

Each nickname is defined by XPath expressions that:
v identify the XML elements representing individual tuples
v specify how to extract the column values from each element.

Nicknames are associated with your XML documents in one of two ways:
v in a fixed manner (using the FILE_PATH nickname option). When this

option is used, the nickname represents data from a specific XML
document.

v with a filename specified at query time (using the DOCUMENT nickname
column option). When this option is used, the nickname can be used to
represent data from any XML document whose schema matches the
nickname definition.

More information on the these options is provided in the procedure section
below.

Procedure:

To map the XML data source to relational tables, you must create nicknames
using the CREATE NICKNAME statement.

118 DB2 LSDC Planning, Installation, and Configuration Guide

�� CREATE NICKNAME nickname (column-name column-information) �

� FOR SERVER server-name OPTIONS (
FILE_PATH ’path’ ,

�

� XPATH ’xpath_expression’) �

column-information:

data-type column-option nickname-column-options

data-type:

SMALLINT
INTEGER
INT

REAL
DOUBLE

PRECISION
DECIMAL
DEC (integer)
NUMERIC , integer
NUM
CHARACTER
CHAR (integer)

VARCHAR (integer)

nickname-column-options:

OPTIONS (DOCUMENT ’value’
XPATH ’xpath_expression’
PRIMARY_KEY ’YES’
FOREIGN_KEY ’parent_nickname’

)

column-option:

NOT NULL

Nickname options

FILE_PATH
Specifies the file path of the XML document. If this nickname option
is specified then no DOCUMENT nickname column option should be
specified. This option is accepted only for the root nickname (the
nickname identifying the elements at the top level of the XML
document).

Chapter 7. XML as a data source 119

XPATH
Specifies an XPath expression that identifies the XML elements
representing individual tuples. The XPATH nickname option for a
child nickname is evaluated in the context of the path specified by the
XPATH nickname option of its parent. This XPath expression is used
as a context for evaluating column values identified by the XPATH
nickname column options.

Nickname column options

DOCUMENT
Specifies the kind of XML data. Currently, the XML wrapper only
supports FILE. This option is accepted only for the root nickname (the
nickname identifying the elements at the top level of the XML
document). Only one column can be specified with the DOCUMENT
option per nickname. The column associated with the DOCUMENT
option has to be of data type VARCHAR.

Using the DOCUMENT nickname column option, instead of the
FILE_PATH nickname option, implies that the document
corresponding to this nickname will be supplied during query
execution. If the DOCUMENT option has the ″FILE″ value, it means
that what will be supplied during query execution is the name of a
file containing a document. The following CREATE NICKNAME
example illustrates the use of the DOCUMENT nickname column
option:
CREATE NICKNAME customers
(

doc VARCHAR(100) OPTIONS(DOCUMENT ’FILE’),
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS(XPATH ’//customer’);

The following query, specifying the location of the XML document in
the WHERE clause, can now be run against the customers nickname:
SELECT * FROM customers WHERE doc=’/home/db2user/Customers.xml’;

XPATH
Specifies the XPath expression in the XML document where the data
corresponding to this column can be found. This XPath expression is
applied after evaluating the XPath expression specified in the XPATH
nickname option.

PRIMARY_KEY
Indicates that this is a parent nickname. The column data-type should
always be VARCHAR(16). A nickname can have at most one
PRIMARY_KEY column option. ’YES’ is the only legal value. The

120 DB2 LSDC Planning, Installation, and Configuration Guide

column designated with this option holds a key generated by the
wrapper. The column’s value cannot be retrieved in a SELECT list and
the XPATH option must not be specified for this column. The column
can only be used to join parent and child nicknames.

FOREIGN_KEY
Indicates that this is a child nickname and specifies the name of the
corresponding parent nickname. A nickname can have at most one
FOREIGN_KEY column option. The value for this option is case
sensitive. The column designated with this option holds a key
generated by the wrapper. The column’s value cannot be retrieved in
a SELECT list and the XPATH option must not be specified for this
column. The column can only be used to join parent and child
nicknames.

Nickname examples

The following examples illustrate the procedure for creating nicknames for
XML data sources using the sample XML file shown in for the sample
document in Figure 12.

<doc>
<customer id=’123’>

<name>...</name>
<address>...</address>
...
<order>

<amount>...</amount>
<date>...</date>

<item quant=’12’>
<name>...</name>

</item>
<item quant=’4’>...</item>
...

</order>
<order>...</order>
...
<payment>

<number>...</number>
<date>...</date>

</payment>
<payment>...</payment>
...

</customer>
<customer id=’124’>...</customer>

</doc)

Figure 12. Sample XML file

Chapter 7. XML as a data source 121

To create the parent nickname, customers, specify the following statement:
CREATE NICKNAME customers
(

id VARCHAR(5) OPTIONS(XPATH ’./@id’)
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS(XPATH ’//customer’,

FILE_PATH ’/home/db2user/Customers.xml’);

To create the nicknames for the children of customer –orders, payments, and
items –specify the following three nickname statements:

For orders:
CREATE NICKNAME orders
(

amount INTEGER OPTIONS(XPATH ’./amount’),
date VARCHAR(10) OPTIONS(XPATH ’./date’),
oid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’),
cid VARCHAR(16) OPTIONS(FOREIGN_KEY ’CUSTOMERS’))
FOR SERVER xml_server
OPTIONS(XPATH ’.//order’);

For payments:
CREATE NICKNAME payments
(

number INTEGER OPTIONS(XPATH ’./number’),
date VARCHAR(10) OPTIONS(XPATH ’./date’),
cid VARCHAR(16) OPTIONS(FOREIGN_KEY ’CUSTOMERS’))
FOR SERVER xml_server
OPTIONS(XPATH ’.//payment’);

For items:
CREATE NICKNAME items
(

name VARCHAR(20) OPTIONS(XPATH ’./name’),
quantity INTEGER OPTIONS(XPATH ’./@quant’),
oid VARCHAR(16) OPTIONS(FOREIGN_KEY ’ORDERS’))
FOR SERVER xml_server
OPTIONS(XPATH ’.//item’);

The next task in this sequence of tasks is Creating federated views for non-root
nicknames (XML wrapper).

Related tasks:

v “Registering nicknames for table-structured files” on page 19
v “Registering nicknames for Documentum data sources” on page 40
v “Registering nicknames for Excel data sources” on page 73

122 DB2 LSDC Planning, Installation, and Configuration Guide

v “Registering nicknames for BLAST data sources” on page 98
v “Registering the server for an XML data source” on page 117
v Chapter 8, “Specifying costing nickname options” on page 133

Creating federated views for non-root nicknames (XML wrapper)

This task is part of the main task for Adding XML to a federated system. It is
recommended that you define federated views over the hierarchy of
nicknames that describe an XML document. Defining federated views ensures
that queries that join pieces of an XML nickname hierarchy not including the
root and queries that join on columns other than the special PRIMARY_KEY
and FOREIGN_KEY columns execute properly.

Procedure:

To define federated views that include all required predicates and a full path
to the root, perform the following steps:
1. Define a view for each non-root nickname as a join of all the nicknames on

the path to the root.
2. In the WHERE clause, make the join predicates over the PRIMARY_KEY

and FOREIGN_KEY columns.
3. In the SELECT list, include all the columns of the non-root nickname

except the one designated with the FOREIGN_KEY nickname column
option.

4. In the SELECT list, include the column of the parent nickname designated
with the PRIMARY_KEY option.

View examples:

The following example illustrates the use of views. In this example, assume
that the nicknames of the sample file shown in Figure 13 on page 124 were
previously created as customers, orders, payments and items.

Chapter 7. XML as a data source 123

The views for the non-root nicknames order, payment and item are then:

For order:
CREATE FEDERATED VIEW order_view AS
SELECT o.amount, o.date, o.oid, c.cid
FROM customers c, orders o
WHERE c.cid = o.cid;

For payment:
CREATE FEDERATED VIEW payment_view AS
SELECT p.amount, p.date, c.cid
FROM customers c, payments p
WHERE c.cid = p.cid;

For item:
CREATE FEDERATED VIEW item_view AS
SELECT it.quantity, it.name, o.oid
FROM customers c, orders o, items i
WHERE c.cid = o.cid AND o.oid = i.oid;

Queries submitted to these views are processed correctly because the join path
to the root is present.

<doc>
<customer id=’123’>

<name>...</name>
<address>...</address>
...
<order>

<amount>...</amount>
<date>...</date>

<item quant=’12’>
<name>...</name>

</item>
<item quant=’4’>...</item>
...

</order>
<order>...</order>
...
<payment>

<number>...</number>
<date>...</date>

</payment>
<payment>...</payment>
...

</customer>
<customer id=’124’>...</customer>

</doc)

Figure 13. Sample XML file.

124 DB2 LSDC Planning, Installation, and Configuration Guide

For example, the following query pairs the amounts of customer’s orders and
payments from the same date:
SELECT o.amount, p.amount
FROM order_view o, payment_view p
WHERE p.date = o.date AND

p.cid = o.cid;

There are no further tasks in this sequence of tasks.

Related tasks:

v “Registering nicknames for XML data sources” on page 118

Running queries against XML data sources

This section lists several sample queries using the nicknames customers,
orders, and items created with the CREATE NICKNAME statement.

Procedure:

To run queries, use the following examples as a guide.

The following query displays all customer names:
SELECT name FROM customers;

The following query displays all records where the customer name is ’Smith’:
SELECT * FROM customers where name=’Smith’;

The following query displays the amounts and customer names for each order
of each customer:
SELECT c.name, o.amount FROM customers c, orders o where c.cid=o.cid;

The join c.cid=o.cid is required to indicate the child/parent relationship
between the orders and the customers nicknames.

The following query selects the order amounts, the item names and the
customer addresses for each order and item of each customer:
SELECT c.address, o.amount, i.name FROM customers c, orders o, items i
WHERE c.cid=o.cid AND o.oid=i.oid;

Again the two joins are required to maintain the child/parent relationships.

The following two examples show how to write queries using a nickname that
does not specify a FILE_PATH nickname option, but does specify a

Chapter 7. XML as a data source 125

DOCUMENT nickname column option. The corresponding CREATE
NICKNAME statement used to create the nickname customers, is shown
below:
CREATE NICKNAME customers
(

doc VARCHAR(100) OPTIONS(DOCUMENT ’FILE’),
name VARCHAR(16) OPTIONS(XPATH ’.//name’),
address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),
cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))
FOR SERVER xml_server
OPTIONS(XPATH ’//customer’);

The following query selects all the data from the XML file Customers.xml with
a file path of /home/db2user/Customers.xml:
SELECT * FROM customers WHERE doc=’/home/db2user/Customers.xml’;

The following query selects names of customers and dates of their orders for
orders over the amount of 1000 from the XML file Customers.xml located at
/home/db2user/Customers.xml:
SELECT c.name, o.date FROM customers c, orders o
WHERE c.doc=’/home/db2user/Customers.xml’ AND o.amount > 1000;

Related tasks:

v “Running queries against Documentum data sources” on page 55
v “Running queries against Excel data sources” on page 74

Limitations and considerations for the XML wrapper

This section contains a list of limitations and considerations associated with
the use of the XML wrapper.
v The passthru capability is not supported.
v XML documents can only be read.

Related reference:

v “Wrapper limitations and considerations for the table-structured file
wrapper” on page 23

v “File limitations and considerations for the table-structured file wrapper”
on page 24

v “Limitations and considerations for the Documentum wrapper” on page 60
v “Wrapper limitations for the Excel wrapper” on page 77
v “Excel file limitations” on page 78

126 DB2 LSDC Planning, Installation, and Configuration Guide

Messages for the XML wrapper

This section lists and describes messages that you might encounter when
working with the wrapper for XML. For more information on messages, see
the DB2 Message Reference.

Table 26. Messages issued by the wrapper for XML

Error Code Message Explanation

SQL0405N The numeric literal
″<column_name>″ is not
valid because its value is out
of range.

The specified numeric literal is not in the
acceptable range. Check data type of
column in the CREATE NICKNAME
statement.

SQL0408N A value is not compatible
with the data type of its
assignment target. Target
name is ″<column_name>″.

The data type of the value to be assign to
the column is incompatible with the
declared data type of the assignment
target. Check data type of column in the
CREATE NICKNAME statement.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Error creating
wrapper object″.)

An error occurred when creating a new
wrapper object. Contact DB2 support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Xerces initialization
error″.)

An exception occurred during the
initialization of the Xerces parser. Contact
DB2 support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason
″<xalan_error_message>″.)

An error occurred when calling a Xalan
function. Check the XML document. If
the document is well structured, refer to
Xalan documentation for more details on
the error message.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason
″XalanDOMException:
exception code is
<exception_code>″.)

A XalanDOMException exception
occurred. Refer to the Xalan
documentation to see the meaning of the
exception code.

Chapter 7. XML as a data source 127

Table 26. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Error getting node
value″.)

Xalan tried to access an invalid node.
Contact DB2 support.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Error parsing XML
document″.)

An error occurred when parsing the XML
document. Check the XML document.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Error getting root
element of XML document″.)

After parsing the XML document, Xalan
tried to retrieve the root element but
failed. Check the XML document.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Unspecified
exception while evaluating
XPath expression″.)

An unspecified exception was generated
by Xalan when evaluating an XPath
expression. Check XML document and
refer to Xalan documentation.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Unspecified
exception while getting node
value″.)

An unspecified exception was generated
by Xalan when retrieving a node value.
Check XML document and refer to Xalan
documentation.

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Unspecified
exception while building
DOM tree″.)

An unspecified exception was generated
by Xalan when building the DOM tree
for the XML document. Check XML
document and refer to Xalan
documentation.

128 DB2 LSDC Planning, Installation, and Configuration Guide

Table 26. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL0901N The SQL statement failed
because of a non-severe
system error. Subsequent SQL
statements can be processed.
(Reason ″Memory allocation
error″.)

An error occurred when allocating
memory.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″Column data type not
supported″.

A nickname column has an unsupported
data type. Check the CREATE
NICKNAME statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″TYPE clause not
supported″.

The CREATE SERVER statement contains
a TYPE clause. This clause is not
supported by the XML wrapper. Remove
it.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″VERSION clause not
supported″.

The CREATE SERVER statement contains
a VERSION clause. This clause is not
supported by the XML wrapper. Remove
it.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″Invalid use of predicate
with DOCUMENT column″.

The query contains a predicate with
incorrect operands. Check the predicates
in the query.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″Invalid use of predicate
with FOREIGN_KEY
column″.

The query contains a predicate with
incorrect operands. Check the predicates
in the query.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″Invalid use of predicate
with PRIMARY_KEY
column″.

The query contains a predicate with
incorrect operands. Check the predicates
in the query.

Chapter 7. XML as a data source 129

Table 26. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″XPATH and
DOCUMENT options not
compatible″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″XPATH and
FOREIGN_KEY options not
compatible″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″XPATH and
PRIMARY_KEY options not
compatible″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″DOCUMENT and
FOREIGN_KEY options not
compatible″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″DOCUMENT and
PRIMARY_KEY options not
compatible″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″FOREIGN_KEY and
PRIMARY_KEY options not
compatible″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

130 DB2 LSDC Planning, Installation, and Configuration Guide

Table 26. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″Column option missing″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″DOCUMENT column
option not unique″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″FOREIGN_KEY column
option not unique″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″PRIMARY_KEY column
option not unique″.

The CREATE NICKNAME statement is
not correct as specified. Check its syntax.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″Invalid DOCUMENT
option value″.

The value of the DOCUMENT option
specified in the CREATE NICKNAME
statement is not valid: it can only be
’FILE’. Check the CREATE NICKNAME
statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″Invalid PRIMARY_KEY
option value″.

The value of the PRIMARY_KEY option
specified in the CREATE NICKNAME
statement is not valid.: it can only be
’YES’. Check the CREATE NICKNAME
statement.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″Invalid FOREIGN_KEY
option value″.

The value of the FOREIGN_KEY option
specified in the CREATE NICKNAME
statement is not valid: no parent
nickname matching the option value
could be found. Check the CREATE
NICKNAME statement.

Chapter 7. XML as a data source 131

Table 26. Messages issued by the wrapper for XML (continued)

Error Code Message Explanation

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″XML wrapper″.
Associated text and tokens
are ″FILE_PATH and
DOCUMENT options not
compatible″.

The CREATE NICKNAME statement is
not correct as specified: the FILE_PATH
and DOCUMENT options cannot be
specified at the same time. Check the
CREATE NICKNAME syntax.

SQL1881N ″<option_name>″ is not a
valid ″<option_type>″ option
for ″<object_name>″.

The specified option might not exist or
might not be valid for this particular data
source. Check the CREATE NICKNAME
statement.

SQL1883N ″<option_name>″ is a
required ″<option_type>″
option for ″<object_name>″.

A required DB2 option has not been
specified. Check the CREATE
NICKNAME statement.

Related reference:

v “Messages for the table-structured file wrapper” on page 25
v “Messages for the Documentum wrapper” on page 62
v “Messages for the Excel wrapper” on page 78
v “Messages for the BLAST wrapper” on page 109

132 DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 8. Specifying costing nickname options

In order to produce efficient execution plans the optimizer generates a set of
different plans and estimates the resources needed for each. The plan that
requires least resources is used for the evaluation.

The estimates of the evaluation times for the query portions executed by
external data sources are provided by the wrapper. The formulas used in this
calculation use three basic parameters that can be changed to fit a particular
installation.

These parameters are specified as the following nickname options:

RESET_COST
Specifies the time in milliseconds to contact the external server and
get back the result.

ADVANCE_COST
Specifies the time in milliseconds to obtain each row.

BIND_COST
Specifies the time in milliseconds needed to pass a parameter from the
wrapper to the external source.

All values must be given as integers. For default values, see the DB2 Life
Sciences Data Connect Release Notes Version 8.

Procedure:

To specify a costing nickname option:
1. Analyze your installation to determine if customization of the costing

options benefits your company’s processing of federated queries.
2. If so, add one or more of the costing options to the wrapper’s CREATE

NICKNAME statement as a nickname option.
3. Submit the CREATE NICKNAME statement.

See the DB2 SQL Reference for more information about the CREATE
NICKNAME statement.

Related tasks:

v “Registering nicknames for table-structured files” on page 19
v “Registering nicknames for Documentum data sources” on page 40
v “Registering nicknames for Excel data sources” on page 73

© Copyright IBM Corp. 2001, 2002 133

v “Registering nicknames for BLAST data sources” on page 98
v “Altering nicknames” on page 135
v “Registering nicknames for XML data sources” on page 118

134 DB2 LSDC Planning, Installation, and Configuration Guide

Chapter 9. Altering nicknames

This chapter explains how to use the ALTER NICKNAME statement to alter
previously registered nicknames.

Altering nicknames

You can use the ALTER NICKNAME statement to modify the federated
database’s representation of a data source or view.

Restrictions:

The ALTER NICKNAME statement can not be used to alter column names for
any DB2 Life Sciences Data Connect wrapper.

Procedure:

To alter nickname column values, you must use the ALTER NICKNAME
statement to:
v Change the local data types of these columns
v Add, change, or delete options for these columns

For more information on the ALTER NICKNAME statement, see the DB2 SQL
Reference.

Related tasks:

v “Changing the data type” on page 135
v “Changing the nickname option” on page 136

Changing the data type

You can use the ALTER NICKNAME statement to change the data type of a
column.

Procedure:

To change the data type of a column, use the ALTER NICKNAME statement.

For example, the following ALTER NICKNAME statement changes the local
data type of the DRUG column to CHAR(30). The DRUG column was

© Copyright IBM Corp. 2001, 2002 135

originally defined as a CHAR(20) using a CREATE NICKNAME statement.
The nickname DRUGDATA1 refers to a local table-structured file called
drugdata1.txt.
ALTER NICKNAME DRUGDATA1

ALTER COLUMN DRUG
LOCAL TYPE CHAR(30)

Related tasks:

v “Altering nicknames” on page 135
v “Changing the nickname option” on page 136

Changing the nickname option

You can use the ALTER NICKNAME statement to change a nickname option.

Procedure:

To change a nickname option, use the ALTER NICKNAME statement.

For example, the following ALTER NICKNAME statement changes the fully
qualified path for the table-structured file, drugdata1.txt. The path was
originally defined as ’/user/pat/drugdata1.txt’ using a CREATE NICKNAME
statement. The nickname DRUGDATA1 refers to a local table-structured file
called drugdata1.txt.
ALTER NICKNAME DRUGDATA1

OPTIONS (SET FILE_PATH ’/usr/kelly/data/drugdata1.txt’)

Related tasks:

v “Altering nicknames” on page 135
v “Changing the data type” on page 135

136 DB2 LSDC Planning, Installation, and Configuration Guide

Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 2001, 2002 137

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information that has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

138 DB2 LSDC Planning, Installation, and Configuration Guide

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious, and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source
language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Notices 139

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both, and have been used
in at least one of the documents in the DB2 UDB documentation library.

ACF/VTAM
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
BookManager
C Set++
C/370
CICS
Database 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eServer
Extended Services
FFST
First Failure Support Technology
IBM
IMS
IMS/ESA
iSeries

LAN Distance
MVS
MVS/ESA
MVS/XA
Net.Data
NetView
OS/390
OS/400
PowerPC
pSeries
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/400
SQL/DS
System/370
System/390
SystemView
Tivoli
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WebSphere
WIN-OS/2
z/OS
zSeries

The following terms are trademarks or registered trademarks of other
companies and have been used in at least one of the documents in the DB2
UDB documentation library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

140 DB2 LSDC Planning, Installation, and Configuration Guide

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service
marks of others.

Notices 141

142 DB2 LSDC Planning, Installation, and Configuration Guide

Bibliography

This bibliography contains DB2 Universal Database publications that you
might find useful while working with DB2 Life Sciences Data Connect.
v DB2 Connect User’s Guide (SC09-2954)
v DB2 for UNIX Quick Beginnings (GC09-2970)
v DB2 SQL Reference (SC09-2974)
v DB2 Administration Guide: Planning (SC09-2946)
v DB2 Administration Guide: Implementation (SC09-2944)
v DB2 Administration Guide: Performance (SC09-2945)
v DB2 Message Reference (GC09-2978)
v IBM DB2 Universal Database Federated Systems Guide (GC27-1224)
v DB2 Life Sciences Data Connect Release Notes Version 8

© Copyright IBM Corp. 2001, 2002 143

144 DB2 LSDC Planning, Installation, and Configuration Guide

Index

B
BLAST

adding to a federated system
BLAST configuration file 91
CREATE NICKNAME

statement 98
CREATE SERVER

statement 97
CREATE WRAPPER

statement 95
registering nicknames 98
registering the server 97
registering the wrapper 95
setting up and configuring the

BLAST daemon 91
starting the BLAST

daemon 94
verifying that the correct

blastall executable is
installed 91

verifying that the correct
matrix files are installed 91

description 85
messages 109

C
CREATE FEDERATED VIEW

statement
XML 123

CREATE FUNCTION statement
Documentum 49

CREATE NICKNAME statement
BLAST 98
Documentum 40
Excel files 73
table-structured files 19
XML 118

CREATE SERVER statement
BLAST 97
Documentum 38
Excel files 72
table-structured files 18
XML 117

CREATE USER MAPPING statement
Documentum 40

CREATE WRAPPER statement
BLAST 95
Documentum 36
Excel files 71

CREATE WRAPPER statement
(continued)

table-structured files 16
XML 116

CreateNicknameFile utility,
Documentum 56

configuring 58
installing 57
mapping the DM_ID object

type 59

D
DB2_DJ_COMM environment

variable 17, 37, 96, 116
DiscoveryLink 2
Documentum

adding to a federated system
CREATE FUNCTION

statement 49
CREATE NICKNAME

statement 40
CREATE SERVER

statement 38
CREATE USER MAPPING

statement 40
CREATE WRAPPER

statement 36
CreateNicknameFile

utility 56
linking to Documentum client

libraries (AIX and Solaris
Operating Environment
only) 34

mapping users 40
pointing to Documentum’s

client dmcl.ini file 35
registering custom

functions 49
registering nicknames 40
registering the server 38
registering the wrapper 36

CreateNicknameFile utility 56
description 31
dual defining repeating

attributes 60
example 31
limitations and

considerations 60
messages 62
user access to documents 62

E
Excel files

adding to a federated system
CREATE NICKNAME

statement 73
CREATE SERVER

statement 72
registering nicknames 73
registering the server 72
registering the wrapper 71

description 69
example 69
file access control model 78
limitations and

considerations 77, 78
messages 78
sample user scenario 75

L
life sciences data sources 1

M
messages

BLAST wrapper 109
Documentum wrapper 62
Excel wrapper 78
table-structured file wrapper 25
XML wrapper 109

N
nickname costing options 133
nicknames

altering 135
changing a data type 135
changing a nickname option 136
specifying costing options 133

O
optimization

BLAST 108
table-structured files 25

S
sample queries 55

BLAST
constructing 98, 106
samples 106

Documentum 55
Excel 74

© Copyright IBM Corp. 2001, 2002 145

sample queries (continued)
XML 125

T
table-structured files

accessing with DB2 Life Sciences
Data Connect 14

adding to a federated system
registering nicknames 19
registering the server 18
registering the wrapper 16

example 13
file access control model 25
limitations and

considerations 23, 24
messages 25
optimization 25
overview 13
types 13

W
wrapper

definition 1
wrappers

default library names by
platform 10

life sciences, by platform 5

X
XML (eXtensible Markup Language)

adding to a federated
system 116

CREATE FEDERATED VIEW
statement 123

CREATE NICKNAME
statement 118

CREATE SERVER
statement 117

CREATE WRAPPER
statement 116

creating federated views for
non-root nicknames 123

registering nicknames 118
registering the server 117
registering the wrapper 116

description 111
limitations and

considerations 126
messages 127

146 DB2 LSDC Planning, Installation, and Configuration Guide

Contacting IBM

In the United States, call one of the following numbers to contact IBM:
v 1-800-237-5511 for customer service
v 1-888-426-4343 to learn about available service options
v 1-800-IBM-4YOU (426-4968) for DB2 marketing and sales

In Canada, call one of the following numbers to contact IBM:
v 1-800-IBM-SERV (1-800-426-7378) for customer service
v 1-800-465-9600 to learn about available service options
v 1-800-IBM-4YOU (1-800-426-4968) for DB2 marketing and sales

To locate an IBM office in your country or region, check IBM’s Directory of
Worldwide Contacts on the web at www.ibm.com/planetwide

Product information

Information regarding DB2 Universal Database products is available by
telephone or by the World Wide Web at
www.ibm.com/software/data/db2/udb

This site contains the latest information on the technical library, ordering
books, client downloads, newsgroups, FixPaks, news, and links to web
resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the
IBM Worldwide page at www.ibm.com/planetwide

© Copyright IBM Corp. 2001, 2002 147

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

����

Part Number: CT16FNA

Printed in U.S.A.

GC27-1235-00

(1
P)

P/
N:

CT
16

FN
A

Spine information:

���
IBM

®

DB2
®

Life Sciences Data
Connect

DB2 LSDC Planning, Installation, and
Configuration Guide Version 8

	Contents
	About this book
	Who should read this book
	What's new in Version 8?
	Online information
	Conventions
	How to read the syntax diagrams
	How to send your comments

	Chapter 1. What is DB2 Life Sciences Data Connect?
	DB2 Life Sciences Data Connect
	IBM Life Sciences DiscoveryLink

	Chapter 2. Installing DB2 Life Sciences Data Connect
	Installing DB2 Life Sciences Data Connect
	Before installing DB2 Life Sciences Data Connect
	Installing DB2 Life Sciences Data Connect on AIX, HP-UX, Linux, and Solaris Operating Environment servers
	Installing DB2 Life Sciences Data Connect on Windows servers
	After installing DB2 Life Sciences Data Connect

	Chapter 3. Table-structured files as data sources
	What are table-structured files?
	Types of table-structured files
	Sorted files
	Unsorted files

	How DB2 Life Sciences Data Connect works with table-structured files
	Adding table-structured files to a federated system
	Registering the table-structured file wrapper
	Setting the DB2_DJ_COMM environment variable for the table-structured file wrapper
	Registering the server for table-structured files
	Registering nicknames for table-structured files
	Wrapper limitations and considerations for the table-structured file wrapper
	File limitations and considerations for the table-structured file wrapper
	File access control model for the table-structured file wrapper
	Optimization tips and considerations for the table-structured file wrapper
	Messages for the table-structured file wrapper

	Chapter 4. Documentum as a data source
	What is Documentum?
	Adding Documentum to a federated system
	Linking to Documentum client libraries (AIX and Solaris Operating Environment only)
	Pointing to Documentum's client dmcl.ini file
	Registering the Documentum wrapper
	Setting the DB2_DJ_COMM environment variable for the Documentum wrapper
	Registering the server for Documentum data sources
	Arguments
	Options

	Mapping users (Documentum wrapper)
	Registering nicknames for Documentum data sources
	Column options
	Nickname column options
	Nickname options
	Understanding pseudo columns
	CREATE NICKNAME example

	Registering custom functions for Documentum data sources
	Custom function string argument rules
	Using custom functions in queries
	Custom function table

	Running queries against Documentum data sources
	What is the CreateNicknameFile utility for the Documentum wrapper?
	Installing the CreateNicknameFile utility (Documentum wrapper)
	Configuring the CreateNicknameFile utility (Documentum wrapper)
	Mapping the DM_ID object type in Documentum registered tables
	Dual defining repeating attributes (Documentum wrapper)
	Limitations and considerations for the Documentum wrapper
	Access control for the Documentum wrapper
	Messages for the Documentum wrapper

	Chapter 5. Excel as a data source
	What is Excel?
	Prerequisite for the Excel wrapper
	Adding Excel to a federated system
	Registering the Excel wrapper
	Registering the server for an Excel data source
	Argument definitions

	Registering nicknames for Excel data sources
	CREATE NICKNAME syntax (for Excel)
	Option definitions

	Running queries against Excel data sources
	Sample Excel wrapper scenario
	Wrapper limitations for the Excel wrapper
	Excel file limitations
	File access control model for the Excel wrapper
	Messages for the Excel wrapper

	Chapter 6. BLAST as a data source
	What is BLAST?
	Adding BLAST to a federated system
	Verifying that the correct version of the blastall executable and matrix files are installed
	Configuring the BLAST daemon
	Starting the BLAST daemon
	Registering the BLAST wrapper
	Setting the DB2_DJ_COMM environment variable for the BLAST wrapper
	Registering the server for a BLAST data source
	Arguments
	Options

	Registering nicknames for BLAST data sources
	Nickname column options
	Nickname options
	Definition line parsing
	Fixed columns
	Input fixed columns
	Output fixed columns

	CREATE NICKNAME example

	Constructing BLAST SQL queries
	Sample BLAST queries
	Optimization tips for the BLAST wrapper
	Messages for the BLAST wrapper

	Chapter 7. XML as a data source
	What is XML?
	Adding XML to a federated system
	Registering the XML wrapper
	Setting the DB2_DJ_COMM environment variable for the XML wrapper
	Registering the server for an XML data source
	Registering nicknames for XML data sources
	Creating federated views for non-root nicknames (XML wrapper)
	Running queries against XML data sources
	Limitations and considerations for the XML wrapper
	Messages for the XML wrapper

	Chapter 8. Specifying costing nickname options
	Chapter 9. Altering nicknames
	Altering nicknames
	Changing the data type
	Changing the nickname option

	Notices
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

